بررسي امكانپذيري استفاده از بوشينگهاي پليمری به جای سراميكی در ترانسفورماتور

بررسي امكانپذيري استفاده از بوشينگهاي پليمری به جای سراميكی در ترانسفورماتور

براي مدت طولاني استفاده از مواد سراميكي به عنوان عايق در صنعت‌برق رايج بود ولي اشكالاتي كه بر اثر كاربرد اين مواد بوجود مي‌آمد محققان را بر آن داشت تا به فكر استفاده از موادي جايگزين برآيند. استفاده از عايق‌هاي پليمري يكي از انتخا‌ب‌هايي بودكه در اين راستا مطرح شد و با توسعه تكنولوژي پليمر و توليد پليمرهاي مهندسي با خواص مطلوب، توجه محققان بيشتر به اين سمت معطوف شد. استفاده از پليمر به عنوان عايق در صنعت‌برق نه تنها خواص الكتريكي مورد نياز را تامين مي‌كند بلكه نقاط ضعف سراميك را نيز برطرف مي‌كند.
در اين مقاله ضمن اشاره به معايب عايق‌هاي سراميكي كه در نتيجه سال‌ها استفاده از آنها درصنعت‌برق بدان پي‌برده شده است و طرح دلايل تمايل به جايگزيني آنها با عايق‌هاي پليمري در سال‌هاي اخير،‌نتايج امكان‌سنجي فني و اقتصادي صورت گرفته در خصوص جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتورها با انواع پليمري آنها و تعيين و اولويت‌بندي جايگزين‌هاي مناسب براي اين كار با در نظر گرفتن شرايط كاربري و مسائل اقتصادي ارايه شده است.

 

يك فرآورده سراميكي، از گل كه مخلوطي از آب و خاك است ساخته شده، در هوا خشك و درحرارت سخت شده است.كلمه سراميك از كلمه يوناني Keramos كه خود ريشه سانسكريت دارد و به معني خاك رس پخته شده است، گرفته شده است. بنابراين چنانچه اين مفهوم از كلمه سراميك، مدنظر باشد مي‌‌توان معادل فارسي «رسينه» را براي آن پيشنهاد كرد.
عايق‌هاي چيني متداول‌ترين نوع عايق‌هاي الكتريكي هستند، چرا كه داراي مقاومت الكتريكي ونيز استحكام زيادي بوده و قيمت اوليه مناسبي دارند. به طور كلي اين مواد در فركانس‌هاي كم و در كليه ولتاژها (اعم از ولتاژ‌هاي پايين يا بالا) كاربرد دارند. براي مدتهاي طولاني، سراميك تنها ماده مورد استفاده براي كاربردهاي عايقي بوده است با اين حال اين ماده در عمل نارسايي‌هايي از جمله موارد زير را از خود نشان مي‌دهد:
-
بسيار شكننده است
-
اتصال قطعات فلزي به آن شكل است
-
دقت ابعادي آن كم است كه اين امر باعث ايجاد مشكلات حادي در طراحي و شكل‌دهي قطعات سراميكي است.
بعد از سال 1945 و با ظهور مواد پليمري در بازارهاي تجاري،تمايل به استفاده از مواد پليمري براي ساخت عايق‌هاي الكتريكي افزايش يافت. علت اين امر توليد رزين اپوكسي با نام آرالديت بود كه باعث شد تا قطعات عايقي ارزان و كوچك با دقت ابعادي بالا وسهولت در فرآيند ساخت توليد شوند. به موازات ساخت پليمرهاي جديد، استفاده از انواع مختلف پليمر براي ساخت قطعات عايقي افزايش يافت به طوري كه در حال حاضر شركت‌هاي مختلفي در دنيا اقدام به ساخت بوشينگ و مقره‌هاي پليمري از انواع مختلف مي‌كنند.
البته در اينجا لازم به ذكر است كه عايق‌هاي سراميكي هنوز هم در مقايسه با عايق‌هاي پليمري مزيت‌هايي به شرح زير دارند:
1-
از نظر قيمت ارزان‌تر از عايق‌هاي پليمري هستند.
2-
روش توليد انبوه آن آسان است.
3-
مواد اوليه مورد نياز جهت توليد عايق‌هاي سراميكي در داخل كشور به وفور يافت مي‌شود.
4-
تجهيزات و ماشين‌آلات كارگاهي آن بسيار ارزان است.

شرح مقاله
گرچه عايق‌هاي سراميكي خواص الكتريكي مطلوبي دارند ولي نقاط ضعف آنها باعث شد تا عايق‌هاي ديگري جايگزين اين نوع عايق‌ها شوند. در ادامه به ذكر اين نقاط ضعف و مزاياي استفاده از عايق‌هاي پليمري ومقايسه بين اين دو نوع عايق پرداخته مي‌شود. همچنين نتايج حاصل از بررسي صورت گرفته جهت انتخاب بهترين نوع عايق پليمري از جنبه‌هاي فني و اقتصادي، جهت جايگزيني با بوشينگ‌هاي سراميكي ترانسفورماتورها ارايه خواهد شد.

معايب عايق‌هاي سراميكي
معايب مكانيكي
معايب مكانيكي عايق‌هاي سراميكي عبارتند از:
-
پارگي عايق يا ستون عايق به علت نيروي قابل ملاحظه بيش از مقدار مجاز و قابل قبول. هنگامي كه نيروي وارد بر زنجير عايق از طرف هادي بطور قابل ملاحظه‌اي افزايش يابد، موجبات شكستگي زنجير عايق و انهدام آن را فراهم مي‌سازد.
-
با توجه به اين كه عمدتاً عايق‌بندي در ايستگاه‌هاي توزيع و انتقال نيرو با عايق‌هاي سراميكي است و با توجه به تعداد زياد اين عايق‌ها در هر ايستگاه ونيز وزن زياد آنها، وزن ستون عايق‌ها افزايش مي‌يابد كه اين امر باعث افزايش حجم و وزن اسكلت فلزي و فونداسيون مربوطه مي‌شود.
-
ضربه‌پذيري كم‌عايق. اين موضوع موجب مي‌شود كه در اثر كوچكترين ضربه- به جهت شكل خاص هندسي آن – توزيع تنش در همه نقاط عايق يكسان نباشد و با توجه به استحكام ناچيز سراميك در مقابل نيروهاي ديناميكي، موجب شكستن و يا ترك برداشتن عايق شود.
-
با توجه به وزن بالاي ستون عايق‌هاي سراميكي، نصب آن بسيار مشكل است و نياز به جرثقيل دارد و به همين دليل زمان و هزينه مونتاژ و نصب آن بالا مي‌رود.
-
با توجه به استحكام ناچيز عايق‌هاي سراميكي در موقع حمل و نقل، احتياط‌هاي لازم جهت نصب بايد بسيار وسيع و دقيق صورت گيرد تا ضربه‌اي به اين عايق‌ها وارد نشود. زيرا اين عايق‌ها ممكن است در اثر ضربه ترك بردارند و همان ترك رشد كرده، موجب ترك خوردگي كامل عايق شود.
-
عايق‌هاي سراميكي داراي انعطاف‌پذيري‌ كمي هستند ولذا در مقابل نيروهاي افقي از جمله نيروي باد كه بر محور آن وارد مي‌شود داراي مقاومت كمي هستند و چون حالت انعطاف‌پذيري ندارند، در صورتي كه نيروي زيادي بر آنها وارد شود مي‌شكنند. با توجه به اين مطلب در مناطقي كه داراي طوفان‌هاي فصلي شديد هستند و يا زلزله‌خيز هستند امكان شكستن عايق‌ها وجود دارد.
-
استحكام فشاري و چسبندگي عايق‌هاي سراميكي ناچيز است. به همين دليل گاهي گلويي مقره و يا آرماتور داخلي از بشقاب جدا مي‌شود كه اين امر نشان مي‌دهد استحكام فشاري و چسبندگي و فشردگي مواد و توزيع يكنواخت مواد در ساخت سراميك‌هاي با شكل هندسي ويژه امكان‌پذير نيست. البته گاهي اوقات با اصلاح قالب و قرارگيري درست آرماتور و فشردگي كامل مواد، اين مشكل تقريباً قابل حل است.

معايب حرارتي
در عايق‌هاي سراميكي، معايب حرارتي ذيل مشاهده مي‌شود:
-
در ساختار لعابي كه روي عايق‌هاي سراميكي اعمال مي‌شود از چسب پلي‌وينيل استات و ديگر جسب‌هاي آلي استفاده مي‌شود. هنگامي كه اين لعاب در كوره قرار مي‌گيرد مواد فرار اين چسب‌ها با درجات فراريت مختلف در دماهاي مختلف و با سرعت‌هاي مختلف خارج مي‌شوند. به همين دليل در حين خروج اين مواد فرار، ترك‌هاي ريز كه با چشم براحتي قابل رويت نيستند در سطح عايق ايجاد مي‌شود كه اين امر بر روي خواص دي‌الكتريك عايق و تخليه جزيي و گاهاً جريان‌هاي سطحي و آلودگي سطحي تاثير بسزايي دارد. اين مشكل به هيچ شكلي قابل حل نيست.
-
با توجه به اين كه دماي Tg اكثر چسب‌هاي آلي لعاب‌ها پايين است، لذا در دماهاي كمتر از صفر و يا مناطق سردسير ممكن است متناسب با نوع لعاب، ترك‌هاي ريز كه به مرور رشد مي‌كنند ايجاد شود كه اين ترك‌ها نيز مشكلاتي همچون بند بالا را بوجود مي‌آورند.
-
تغييرات درجه حرارت محيط در طول سال و يا تغييرات درجه حرارت بين شب و روز در مناطق كويري و انقباض و انبساط عايق (با توجه به اين كه ضريب انبساط لعاب و بيسكويت زيرين لعاب يكسان نيست) موجب مي‌شود كه ابتدا ترك‌هاي متعدد در بدنه عايق مشاهده شود و گسترش تدريجي ترك‌ها بصورت طولي و عمقي موجب بروز تخليه جزيي مي‌شود. بروز تخليه جزيي در محل ترك‌ها و در سطح خارجي عايق، ترك‌ها را وسعت بخشيده، موجبات شكستگي عايق و برجستگي‌ها را فراهم ساخته و به قوس كامل منجر مي‌شود.

معايب الكتريكي
ايرادات الكتريكي كه در واقع به نوعي به استحكام و خواص مواد بكار رفته در لعاب و خاك چيني مربوط است عبارتند از:
-
ايجاد ترك تحت تاثير جريان‌هاي ناشي از تخليه جوي و شدت ميدان قابل ملاحظه‌اي كه در قبال ولتاژهاي موجي تخليه جوي و بروز قوس از نوع قوس‌هاي برگشتي مشاهده مي‌شود. اين عارضه بطور عمده در ستون بوشينگ و يا زنجير مقره خطوط انتقال روي مي‌دهد كه البته اين ترك‌ها، به نوعي در آلودگي و جريان‌هاي سطحي تاثير بسزايي دارد.
-
بروز تخليه جزيي در محل ترك‌هاي ظاهر شده در سطح خارجي عايق و گسترش تدريجي آنها. ادامه بروز تخليه جزيي موجب شكستگي تدريجي عايق وجدا شدن برجستگي‌هاي خارجي مي‌شود در اين صورت زنجير مقره تنها شامل گلويي خواهد بود. هرگونه ترك، مسير مناسب قوس جزيي را در سطح و يا در عمق مقره بين آرماتور داخلي و سطح خارجي يا هادي تحت ولتاژ بوجود مي‌آورد.

معايب خوردگي
يكي از ايرادات و مشكلات بزرگي كه در صنايع وجود دارد مشكل خوردگي است و اين ايراد به عنوان يكي از ايرادات مهم و اساسي درعايق‌هاي سراميكي نيز وجود دارد. خوردگي در سطح خارجي عايق سراميكي صنعتي به دو علت زير روي مي‌دهد:
صدمه مكانيكي ناشي از ضربات مكانيكي و يا حرارت حاصل از تخليه جزيي در پي برقراري جريان سطحي. لازم به توضيح است كه بروز تخليه جزيي در سطح خارجي عايق و ايجاد خوردگي مكانيكي و ترك ناشي از حرارت طي مراحل زير صورت مي‌گيرد.:
-
ايجاد حرارت موضعي در سطح خارجي عايق وبروز قوس‌هاي جزيي بطور چند ميلي‌متر. بروز اينگونه قوس‌ها موجب مي‌شود تا ترك و شيارهايي به عمق 1 تا 3 ميلي‌متر در سطح عايق ايجاد شود.
-
با گذشت زمان و ادامه برقراري تخليه جزيي، جريان به تدريج به داخل عايق نفوذ مي‌كند.
-
با قطع جريان و تخليه جزيي، لايه سطحي مجدداً رطوبت جذب كرده و با بروز قوس مجدد در شرايط مناسب اين پديده تكرار مي‌شود. بروز اين پديده به شرح فوق موجب انبساط و انقباض متوالي عايق گشته و ترك‌هاي مويي در سطح عايق ايجاد مي‌‌كند.
-
با برقراري جريان سطحي و بروز قوس‌هاي موضعي ترك‌هاي ايجاد شده به تدريج به مناطق سرد گسترش مي‌يابند.
خوردگي شيميايي. آلودگي صنعتي برحسب نوع خود مي‌تواند موجبات خوردگي در سطح عايق را فراهم سازد. به همين علت انتخاب نوع مناسب عايق همراه با حداقل لايه سطحي و شست‌وشوي مرتب از اهميت ويژه برخوردار است. هنگامي كه در آلودگي‌هايي كه در سطح عايق مي‌نشيند يون‌هايي مانند سديم، پتاسيم، ليتيم موجود باشند خوردگي شيميايي همزمان با برقراري جريان سطحي با سرعت قابل ملاحظه‌اي روي خواهد داد و هنگامي كه اين نوع خورندگي با تخليه جزيي همراه شود خورندگي به سرعت گسترش مي يابد.

معايب عايق‌هاي سراميكي از نظر آلودگي وشرايط محيطي
يكي از مهمترين ايراداتي كه بر عايق‌هاي سراميكي وارد است تاثير آلودگي‌هاي محيطي بر عملكرد اين نوع عايق‌ها است. زيرا در اثر آلودگي‌ها، فاكتورهاي اصلي عايق الكتريكي خدشه‌دار مي‌شود و تاثير بسزايي در خواص و ويژگي‌هاي عايقي اين مواد ايجاد مي‌كند. آلودگي‌هاي محيطي بر دو نوع است:
آلودگي‌هاي طبيعي. آلودگي‌هاي محيط به صورت ذرات گرد و غبار، دوده و گازهاي شيميايي و تركيبات آنها بر سطح خارجي عايق رسوب مي‌كند و در طول زمان، لايه سطحي متشكل از ذرات با تركيبات مختلف را پديد مي‌آورد كه با گذشت زمان، اين لايه سطحي متشكل از ذرات در مجاورت رطوبت از هدايت ناچيزي برخوردار گشته و جريان تخليه را از طريق لايه و در سطح خارجي عايق بالغ بر چند ميلي‌آمپر برقرار مي‌سازد كه در صورت افزايش ضخامت لايه، جريان برقرار شده فزوني يافته و با تجاوز از مقدار مشخص، شرايط بروز قوس در سطح خارجي عايق را فراهم مي‌سازد. بدين ترتيب آلودگي‌هاي محيط و لايه سطحي ناشي از آن، ولتاژ دي‌الكتريك عايق را كاهش داده، بروز قوس در سطح خارجي را به ازاي ولتاژ اسمي سبب مي‌شود.
آلودگي‌هاي صنعتي. اين نوع آلودگي در مناطق و نواحي صنعتي نظير كارخانجات شيميايي، رنگسازي، سيمان، ذوب فلزات و غيره مشاهده مي‌شود. در اين مراكز مواد شيميايي حاصل از كارخانجات صنعتي در فضا موجود بوده، در سطح عايق‌ها ظاهر مي‌شود. مقررات و پيش‌بيني‌هاي به عمل آمده به منظور كيفيت ايزولاسيون عايق‌ها و انتخاب مناسب آنها، متناسب با آلودگي‌هاي محيط، براي آلودگي‌هاي صنعتي و محيطي يكسان هستند. با اينهمه در مواردي كه ميزان آلودگي اعم از صنعتي ياطبيعي قابل ملاحظه باشد انجام بررسي‌ها و مطالعات دقيق به منظور انتخاب و تعيين نوع عايق مناسب صورت مي‌پذيرد.

مقاومت عايق‌‌هاي سراميكي در مقابل عوامل جوي و اشعه ماوراء بنفش
يكي از معايبي كه در مورد عايق‌هاي سراميكي وجود دارد آن است كه در مقابل نور، رطوبت، گازها و برخي مواد شيميايي ضعيف هستند. مثلاً‌در مقابل گازهاي فلوئور و كلر در مجاورت رطوبت كه توليد اسيدفلوريدريك و يا اسيد كلريدريك مي‌كند به شدت ضعيف هستند و خورده مي‌شوند. در مقابل اثرات مستقيم نور خورشيد و تشعشع ماوراء بنفش همراه با رطوبت و شرايط اكسيد‌كنندگي محيطي رنگ پريدگي،‌تخلخل، ترك خوردگي سطحي، سست‌شدن و شكنندگي ايجاد مي‌شود.
با توجه به موارد ذكر شده مي‌توان گفت كه اين عايق‌ها از دو نظر با اشكال اساسي روبرو هستند:
1-
خواص فيزيكي و مكانيكي اين عايق‌ها ضعيف است.
2-
خواص آلودگي اين عايق‌ها نامطلوب است

عايق‌هاي پليمري
بطور كلي دلايل اصلي كه موجب مي‌شود به جاي عايق‌هاي سراميكي از عايق‌هاي پليمري استفاده شود به شرح ذيل است:
1-
خواص و ويژگي‌هاي مكانيكي عايق‌هاي سراميكي ضعيف است.
2-
ميزان جذب رطوبت عايق‌هاي پليمري از عايق‌هاي سراميكي كمتر است.
3-
ميزان جذب آلودگي و ايجاد جريان سطحي در عايق‌هاي سراميكي زيادتر است.
4-
در ولتاژهاي بالا عايق‌هاي سراميكي مقاومت قوسي پاييني دارند.
5-
ضريب دي‌الكتريك عايق‌هاي سراميكي كم است.
6-
با توجه به اين كه عايق‌هاي چيني و يا شيشه‌اي به عنوان ايزولاسيون خارجي فاصله سطحي مناسبي ندارند به همين منظور جهت تامين فاصله سطحي كافي و كاهش ارتفاع عايق، از عايق‌هاي پليمري با اندازه ايده‌آل برجستگي‌ها استفاده مي‌شود.



مقايسه عايق‌هاي سراميكي وپليمري
مقايسه از لحاظ فني: بطور خلاصه مي‌توان مزاياي عايق‌هاي پليمري را به صورت ذيل خلاصه كرد:
-
مقاومت بالا در برابر انفجار بر اثر فشارهاي داخلي و يا عوامل خارجي همانند تخريب انساني.
-
طول عمر بالاي 25 سال بدون افت رفتار عايقي
-
عملكرد عالي در مناطق آلوده و عدم نياز به شست‌وشو
-
مقاومت بالا نسبت به عوامل محيطي از قبيل اشعه UV، رطوبت و ...
-
وزن كمتر (بين 10 تا 50 درصد وزن عايق‌هاي سراميكي) كه اين مساله باعث كاهش هزينه و ضايعات حمل و نقل مي‌شود.
-
انعطاف‌پذيري كه سبب حذف ضايعات ناشي از شكستن عايق در مراحل توليد، حمل و نقل، نصب و بهره‌برداري مي‌شود.
-
ايمني بالاتر در هنگام وقوع نقص الكتريكي
-
مقاومت بالاتر نسبت به خرابكاري
-
ايمني بيشتر در هنگام وقوع زلزله خصوصاً‌در عايق‌هاي مصرفي در ترانسفورماتورهاي قدرت
-
عدم محدوديت در زواياي نصب
-
قابليت دستيابي به فواصل خزشي بالا (به دليل خواص عايقي مطلوب) بدون افزايش قابل ملاحظه در وزن و ابعاد
-
آب‌بندي موثرتر در محل اتصال عايق
-
امكان افزايش فاصله سطحي در ارتفاع يكسان با عايق‌هاي سراميكي تا حدود 2 برابر، كه اين امر در مناطق با آلودگي بالا از اهميت بالايي برخوردار است.

مقايسه از لحاظ اقتصادي: در مقايسه اقتصادي عايق‌هاي سراميكي با عايق‌هاي پليمري بايد به دو پارامتر توجه كرد:
1-
هزينه اوليه عايق
2-
هزينه عملياتي عايق

1-
هزينه اوليه عايق: قيمت خريد عايق پليمري بيشتر از عايق سراميكي است كه ناشي از قيمت مواد اوليه مورد نياز است البته ميزان افزايش قيمت بر حسب نوع پليمر متغير است.
2-
هزينه عملياتي عايق: يكي از موارد مهمي كه در بررسي فني و اقتصادي جايگزيني بايد مدنظر قرار گيرد مساله هزينه‌هاي عملياتي عايق‌ها است. هزينه‌هاي عملياتي عايق را مي‌توان به دو دسته كلي تقسيم كرد:
الف) هزينه‌هاي عملياتي قبل از نصب در محل بهره‌برداري
ب) هزينه‌هاي عملياتي بعد از نصب در محل بهره‌برداري

الف) هزينه‌هاي عملياتي قبل از نصب در محل بهره‌برداري: اين قسمت شامل كليه هزينه‌هاي قبل از نصب است. در ابتدا بايد هزينه‌هاي ساخت عايق را در نظر گرفت. عايق‌هاي سراميكي به دليل ساختارشان، در حين توليد ضايعات بيشتري را نسبت به عايق‌هاي پليمري ايجاد مي‌كنند (به عنوان مثال شكستن در كوره و تحت حرارت پخت) كه اين هزينه‌ها در انتها بر روي قيمت عايق تاثير مستقيم مي‌گذارند. همچنين عايق‌هاي سراميكي در حين حمل و نقل و نصب در محل مورد نظر دچار شكستگي مي‌شوند كه اين موضوع در مورد عايق‌هاي پليمري صادق نيست. به عبارت ديگر ضايعات عايق‌هاي سراميكي از ابتداي ساخت تا زمان نصب در محل بهره‌برداري بيشتر از عايق‌هاي پليمري است بنابراين هزينه بيشتري برمصرف‌كننده تحميل مي‌كند.
ضايعات عايق‌هاي سراميكي را مي‌توان به صورت زير عنوان كرد:
-
در حين توليد عايق
-
حمل از محل توليد به محل بهره‌برداري
-
نصب عايق
-
ضايعات ناشي از خرابكاري
-
ضايعات ناشي از زلزله
طبق برآوردهاي انجام شده مجموع اين ضايعات به 10 تا 15 درصد بالغ مي‌شود. بديهي است هزينه ضايعات عايق‌ها تنها به جايگزيني آنها محدود نشده و وقفه‌هاي ايجاد شده در مراحل مختلف و نيز مشكلات حاصل از ناكارآمدي عايق تحت سرويس، هزينه‌هاي جانبي قابل ملاحظه‌اي را بر مصرف‌كنندگان تحميل مي‌كند.
ب) هزينه‌هاي عملياتي بعد از نصب در محل بهره‌برداري: اين هزينه‌ها شامل هزينه‌هاي شست‌وشوي عايق، هزينه‌هاي ناشي از شكسته‌شدن عايق و جايگزيني آن، هزينه‌هاي ناشي از ايجاد قوس الكتريكي (بر اثر آلودگي) و ... است.
عايق‌هاي سراميكي به دليل ساختارشان، احتياج به شست‌و شوي متناوب دارند. اين شستشو مخصوصاً در شرايط آب و هوايي با آلودگي بالا (مانند مناطق جنوبي) از اهميت خاصي برخوردار است. در صورت عدم توجه به اين موضوع، تشكيل قوس الكتريكي و صدمه ديدن عايق مي‌تواند هزينه‌هاي بيشتري را تحميل كند در حالي كه عايق‌هاي پليمري به دليل ويژگي‌هاي ساختاري‌شان احتياج كمتري به شست‌وشو دارند بنابراين هزينه شست‌وشوي آنها كمتر است. همچنين احتمال تشكيل قوس الكتريكي و صدمه‌ديدن عايق در اين حالت كمتر است.
با در نظر گرفتن ضايعات عايق‌هاي سراميكي كه رقمي در حدود 10 تا 15 درصد را تشكيل مي‌دهد اختلاف قيمت نهايي عايق‌هاي سراميكي و پليمري چندان تفاوتي با يكديگر نخواهد داشت. بعلاوه بررسي‌ها نشان مي‌دهد كه هزينه ساليانه شست‌وشوي عايق‌هاي سراميكي در مناطق آلوده در حدود 5 تا 10 درصد قيمت عايق است كه باجايگزيني اين عايق‌ها با عايق‌هاي پليمري اين هزينه‌ها حذف خواهند شد.
حذف عمليات شست‌وشوي دوره‌اي عايق‌ها در مناطق آلوده، از ديگر مزاياي اقتصادي عايق‌هاي پليمري است. در خصوص شبكه توزيع،‌ با توجه به پراكندگي و گستردگي مناطق نصب و تعداد اين عايق‌ها در مقايسه با شبكه فوق‌توزيع و قدرت، اين مزيت از اهميت بالاتري برخوردار خواهد بود. در مناطقي همچون بندرعباس، چابهار و بخش‌هايي از استان خوزستان، سيكل شست‌شو در اكثر ماههاي سال در دوره‌هاي 20 تا 25 روزه انجام مي‌گيرد كه در صورت استفاده از عايق‌هاي پليمري نياز به اين عمليات كمتر خواهد شد.
بنابراين بطور خلاصه مي‌توان گفت كه استفاده از عايق‌هاي پليمري علاوه بر كاهش هزينه‌، افزايش كارايي خطوط انتقال نيرو و كاهش صدمات ناشي از كاركرد نامناسب عايق‌هاي سراميكي را به دنبال خواهد داشت.

روش تحقيق
در اين تحقيق جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتور با انواع پليمري آنها مورد بررسي قرار گرفته است. براي اين كار ابتدا شرايط كاربري اين عايق‌ها تعيين شد و سپس با بررسي رزين‌ها و الاستومرهاي مختلف ومقايسه خواص فيزيكي، مكانيكي و ... آنها با شرايط كاربري عايق‌هاي سراميكي، تعدادي از اين پليمرها انتخاب و درنهايت فرمولاسيون‌هاي مناسب براي ساخت عايق‌هاي پليمري پيشنهاد شد. انتخاب اين فرمولاسيون‌ها به صورتي انجام شده كه خواص كاربري عايق‌هاي ساخته شده با كامپاند پليمري حداقل برابر با خواص كاربري عايق سراميكي باشد (كه البته در اكثر موارد خواص كاربري عايق‌هاي پليمري بالاتر از عايق سراميكي است).
مراحل انجام اين تحقيق را مي‌توان به صورت زير بيان كرد:
1-
بررسي عايق‌هاي سراميكي و تعيين شرايط كاربري آنها (نظير خواص مكانيكي، الكتريكي، شيميايي و ...)
2-
استفاده از شرايط كاربري تعيين شده به عنوان مرجعي در طراحي عايق‌هاي پليمري
3-
بررسي پليمرهاي مختلف و مقايسه خواص آنها با شرايط كاربري تعيين شده و حذف مواردي كه قابليت ارايه شرايط كاربري مورد نظر را نداشتند. از اين ميان تعدادي از پليمرها نيز به دليل مسائل فني و اقتصادي حذف شدند (نظير كمياب بودن و يا خاص بودن پليمر مورد نظر).
4-
انتخاب نهايي تعدادي از پليمرها و ارايه فرمولاسيون اوليه براي هر يك از آنها كه بر مبناي اين فرمولاسيون‌ها، مطالعات اوليه براي برآورد قيمت عايق نيز انجام شد. در انتخاب پليمرها، هدف تعيين انواعي از پليمرها بوده كه شرايط كاربري آنها حداقل برابر شرايط كاربري سراميك باشد تا بتوان از آن در جايگزين كردن بجاي عايق‌هاي سراميكي استفاده كرد.
با توجه به مطالعات انجام شده رزين‌هايي كه مي‌توان از آنها براي ساخت عايق‌ پليمري استفاده كرد عبارتند از:

1-
رزين آكريليك:
نام تجاري معروف اين رزين، پلكسي گلاس،لاكيت و آكريليت است.
-
مزايا: دامنه وسيع رنگهاي آنها، شفافيت مطلوب، به آهستگي مي‌سوزند و در نتيجه سوختن دود كمي ايجاد مي‌شود يا اين كه اصلاً دودي آزاد نمي‌شود، مقاومت عالي آنها در برابر شرايط جوي و اشعه ماوراي بنفش، سهولت فرآوري، خواص الكتريكي عالي، صلبيت با استحكام ضربه‌اي خوب، صيقلي بودن خوب، پايداري ابعادي عالي و انقباض كم در قالب‌گيري، افزايش سختي دوجهتي براثر فرم‌دادن كششي.
-
معايب: مقاومت ضعيف در برابر حلال‌ها، امكان ترك خوردن بر اثر تنش، قابليت احتراق، محدوديت استفاده مداوم آنها در دماي بالا (0C93)، غيرقابل ارتجاع بودن.
آكريليك‌ها بصورت كوپليمرهاي مختلفي وجود دارند كه عبارتند از:
-
كوپليمر آكريليك- استايرن- آكريلونيتريل (ASA)
-
كوپليمر آكريلونيتريل- بوتادين- استايرن (ABS)
-
كوپليمر آكريلونيتريل- پلي‌اتيلن كلردار- استايرن (ACS)

2-
رزين اپوكسي
-
مزايا: محدوده وسيع شرايط تثبيت از دماي اتاق تا 350 درجه فارنهايت، عدم تشكيل تركيبات فرار در طي تثبيت، چسبندگي عالي، قابليت تشكيل اتصال عرضي با تركيبات ديگر، مناسب براي همه روش‌هاي فرآوري گرماسخت‌ها.
-
معايب: پايداري كم در برابر اكسيد شدن، حساس بودن بعضي از اين تركيبات در برابر رطوبت، پايداري حرارتي تا
450-350
درجه فارنهايت، گران بودن بسياري از انواع آنها.

3-
فلوئورو پلاستيك‌ها (رزين پلي‌تترافلوتورو اتيلن (PTEE)
-
مزايا: عدم آتشگيري، مقاومت خوب در برابر حلال‌ها ومواد شيميايي، مقاومت خوب در مقابل عوامل جوي، ضريب اصطكاك پايين، امكان بكارگيري در محدوده وسيعي از دماها، خواص الكتريكي بسيار خوب.
-
معايب: عدم امكان استفاده از روش‌هاي معمولي در فرآيند آن، سمي بودن محصولات ناشي از تخريب حرارتي، داشتن خزش، نفوذ‌پذيري، نياز به دماي بالا هنگام فرايند، استحكام اندك، دانسته زياد، قيمت نسبتاً بالا.

4-
رزين‌هاي فنوليك
-
مزايا: قيمت نسبتاً كم، مناسب بودن براي استفاده تا دماي 250 درجه سانتيگراد، مقاومت عالي در مقابل حلال، سختي مناسب، تراكم‌‌پذيري خوب، استحكام زياد، قابليت خاموش‌شوندگي خودبخود، ويژگي‌هاي الكتريكي عالي.
-
معايب: احتياج به پركننده براي قالب‌گيري، مقاومت كم در مقابل بازها و اكسيدكننده‌ها، آزاد شدن مواد فرار طي تثبيت (يك پليمر تراكمي)، تيره بودن رنگ (به دليل بدرنگ شدن در نتيجه اكسيداسيون).


5-
رزين ‌پلي‌كربنات
-
مزايا: ضربه‌پذيري بسيار خوب، مقاومت بسيار خوب در مقابل خزش، دارا بودن درجات متنوعي از شفافيت، قابليت كاربرد مداوم تادماي بيش از 120 درجه سانتيگراد، پايداري ابعادي بسيار خوب.
-
معايب: عدم قابليت فرايند در دماي بالا، مقاومت ضعيف در مقابل قلياها، آسيب‌پذيري در مقابل حلال‌ها، نياز به تثبيت‌كننده ماوراي بنفش.

6-
رزين‌ سيليكوني
الاستومرهايي كه مي‌توان از آنها براي ساخت عايق‌هاي پليمري استفاده كرد عبارتند از:

1- EPDM
-
مزايا: مقاومت عالي در برابر گرما، اُزن و نور خورشيد، انعطاف‌پذيري خيلي خوب در دماهاي پايين، مقاومت خوب در برابر بازها، اسيدها و حلال‌هاي اكسيژن‌دار، مقاومت فوق‌العاده در برابر آب و بخار آب، پايداري عالي رنگ.
-
معايب: مقاومت ضعيف در برابر روغن، بنزين و حلال‌هاي هيدروكربني، چسبندگي ضعيف به الياف وفلزات

2-
سيليكون
-
مزايا: مقاومت برجسته در برابر گرماي زياد، انعطاف پذيري عالي در دماهاي پايين، مانايي فشاري كم، عايق‌كنندگي الكتريكي خيلي خوب، مقاومت عالي در برابر شرايط جوي، ازن، نور خورشيد و اكسايش، پايداري و حفظ رنگ فوق‌العاده.
-
معايب: مقاومت ضعيف در برابر سايش، پارگي و رشد بريدگي، استحكام كششي كم، مقاومت نامطلوب و پايين در برابر روغن، بنزين و حلال‌ها، مقاومت ضعيف در برابر بازها و اسيدها.

3-
هيپالون
-
مزايا: تاخيراندازي خوب در برابر اشتعال، مقاومت سايشي خوب، مقاومت فوق‌العاده در برابر شرايط جوي، ازن، نور خورشيد و اكسايش، مقاومت عالي در برابر بازها و اسيدها، پايداري و حفظ رنگ خيلي خوب، مقاومت متوسط در برابر روغن و بنزين.
-
معايب: مقاومت ضعيف تا متوسط در برابر حلال‌هاي آروماتيك، انعطاف‌پذيري محدود در دماهاي پايين، جهندگي و مانايي فشاري متوسط.
درادامه الويت‌بندي پليمرهاي انتخابي بر اساس مزيت‌هاي فني و اقتصادي آنها ارايه شده است.

4-
انتخاب عايق پليمري مناسب
با مقايسه شرايط كاربري مورد نظر براي اين عايق‌ها با مشخصات پليمرهاي پيشنهادي در بند قبل و نيز با در نظر گرفتن مسائل اقتصادي، مي‌توان انتخاب مناسبترين پليمر براي اين كاربرد را مطابق جدول 1 اولويت‌بندي كرد:

نتيجه‌گيري
استفاده از عايق‌هاي پليمري به جاي عايق‌هاي سراميكي گرچه هزينه‌هاي اوليه بيشتري را بر مصرف‌كننده تحميل مي‌كند ولي از آنجايي كه هزينه‌هاي عملياتي عايق‌هاي پليمري بسيار كمتر از عايق‌هاي سراميكي است در مجموع هزينه استفاده از عايق‌هاي پليمري را نسبت به عايق‌هاي سراميكي كاهش مي‌دهد. همچنين بايد توجه داشت كه استفاده از عايق‌هاي پليمري كاهش خطا را در شبكه‌هاي توزيع و انتقال به همراه خواهد داشت كه اين خود باعث كاهش بسيار در هزينه‌هاي مصرف‌كننده خواهد شد. در صورت جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتورها با نوع پليمري، مناسبترين نوع پليمرها به ترتيب عبارتند از: پليمرهاي اپوكسي، لاستيك‌ سيليكوني، هيپالون، EPDM-NR، پلي كربنات، فلوئور كربن، اكريليك، فنوليك و سيليكون رزين.

مهندس غلامرضا باكري، مهندس هوشنگ عليويرديلو، مهندس الهام امين‌‌نيا

 موسسه تحقيقات ترانسفورماتور ايران، دانشگاه علم و صنعت ايران

http://ibis.blogfa.com/post-60.aspx

چند نوع موتور القایی

چند نوع موتور القایی

:۱ موتور القايي AC فاز شكسته

:۲ موتور القايي با استارت خازني

:۳ موتورهاي AC القايي با خازن دائمي اسپليت

:۴ موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

 

موتور القايي AC فاز شكسته

موتور فاز شكسته همچنين به عنوان Induction start/Induction run (استارت القايي/كاركرد القايي)هم شناخته مي شود كه دو پيچه دارد.پيچه استارت از سيم نازكتر و تعداد دور كمتر نسبت به پيچه اصلي براي بوجود آوردن مقاومت بيشتر ساخته شده است.همچنين ميدان پيچه استارت در زاويه اي غير از آنچه كه پيچه اصلي دارد قرار مي گيرد كه سبب آغاز چرخش موتور مي شود.پيچه اصلي كه از سيم ضخيم تري ساخته شده است موتور را هميشه درحالت چرخش باقي نگه مي دارد.
تورك آغازين كم است مثلا 100 تا 175 درصد تورك ارزيابي شده.موتور براي استارت جرياني زياد طلب مي كند.تقريبا 700 تا 1000 درصد جريان ارزيابي شده.تورك بيشينه توليد شده نيز در محدوده 250 تا 350 درصد از تورك براوردشده مي باشد.

 

كاربريهاي خوب براي موتورهاي فاز شكسته شامل سمباده (آسياب) هاي كوچك , دمنده ها و فنهاي كوچك و ديگر دستگاههايي با نياز به تورك آغازين كم با و نياز به قدرت 1/20 تا 1/3 اسب بخار مي باشد.از استفاده از اين موتورها در كاربريهايي كه به دوره هاي خاموش و روشن و گشتاور زياد نيازدارند خود داري نماييد.

موتور القايي با استارت خازني

اين نوع , موتور اصلاح شده فاز شكسته با خازني سري با آن براي بهبود استارت است.همانند موتور معمولي فاز شكسته اين نوع موتور يك سوئيچ گريز از مركز داشته كه هنگامي كه موتور به 75 درصد سرعت ارزيابي شده مي رسد , پيچه استارت را از مدار خارج مي نمايد.از آنجا كه خازن با مدار استارت موازي است , گشتاور استارت بيشتري توليد مي كند , معمولا در حدود 200 تا 400 درصد گشتاور ارزيابي شده.و جريان استارت معمولا بين 450 تا 575 درصد جريان ارزيابي شده است.كه بسيار كمتر از موتور فاز شكسته و بعلت سيم ضخيمتر در مدار استارت است.
نوع اصلاح شده اي از موتو با استارت خازني ، موتور با استارت مقاومتي است.در اين نوع موتور خازن استارت با يك مقاومت جايگزين شده است.موتور استارت مقاومتي در كاربريهايي مورد استفاده قرار مي گيرد كه ميزان گشتاور استارتينگي كمتر از مقداري كه موتور استارت خازني توليد مي كند لازم است.صرف نظر از هزينه اين موتور امتيازات عمده اي نسبت به موتور استارت خازني ندارد.
اين موتورها در انواع مختلف كاربريهاي پولي و تسمه اي مانند تسمه نقاله هاي كوچك , پمپها و دمنده هاي بزرگ به خوبي بسياري از خود گردانها و كاربريهاي چرخ دنده اي استفاده مي شوند.

موتورهاي AC القايي با خازن دائمي اسپليت

اين موتور (PSC) نوعي خازن دائما متصل به صورت سري به پيچه استارت دارد.اين كار سبب آن ميشود كه پيچه استارت تازماني كه موتور به سرعت چرخش خود برسد بصورت پيچه اي كمكي عمل كند.از آنجا كه خازن عملكرد اصلي , بايد براي استفاده مداوم طراحي شده باشد , نميتواند توان استارتي معادل يك موتور استارت خازني ايجاد نمايد.گشتاور استارت يك موتور (PSC) معمولا كم و در حدود 30 تا 150 درصد گشتاور ارزيابي شده است.موتورهاي (PSC) جريان استارتي پايين , معمولا در كمتر از 200 درصد جريان برآورد شده دارند كه آنها را براي كاربريهايي با سرعتهاي داراي چرخه هاي خاموش روشن بالا بسيار مناسب ميسازد.
موتورهاي PSC امتيازات فراواني دارند.طراحي موتور براحتي براي استفاده با كنترل كننده هاي سرعت ميتواند اصلاح شود.همچنين مي توانند براي بازدهي بهينه و ضريب توان بالا در فشار برآورد شده طراحي شوند.آنها به عنوان قابل اطمينان ترين موتور تك فاز مطرح ميشوند.مخصوصا به اين خاطر كه به سوئيچ گريز از مركز نيازي ندارند.
موتورهاي PSC بسته به طراحيشان كاربري بسيار متنوعي دارند كه شامل فنها , دمنده ها با نياز به گشتاور استارت كم و چرخه هاي كاري غير دائمي مانند تنظيم دستگاهها (طرز كارها) , عملگر درگاهها و بازكننده هاي درب گاراژها ميشود.

موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

اين موتور , همانند موتور با استارت خازن , خازني از نوع استارتي در حالت سري با پيچه كمكي براي گشتاور زياد استارت دارد.همچنين مانند يك موتور PSC خازني از نوع كاركرد كه دركنار خازن استارت در حالت سري با پيچه كمكي است كه بعد از شروع به كار موتور از مدار خارج مي شود.اين حالت سبب بوجود آمدن گشتاوري در حد اضافي مي شود.
اين نوع موتور مي تواند ... و بازده بيشتر طراحي شود.اين موتور بخاطر خازنهاي كاركرد و استارت و سوئيچ گريز از مركز آن پرهزينه است.
اين موتور مي تواند در بسياري از كاربريهايي كه از هرموتور تك فاز ديگري انتظار ميرود استفاده شود.اين كاربريها شامل ماشينهاي مرتبط با چوب , كمپرسورهاي هوا , پمپهاي آب فشار قوي , پمپهاي تخليه و ديگر كاربردهاي نيازمند گشتاورهاي بالا در حد 1 تا 10 اسب بخار مي شوند.

منبع: milad0milad0pop.blogfa.com

سيستم هاي سه فازه

در كشورهاي صنعتي، سه فاز روش عمومي انتقال توان سه فاز است. اين سيستم در وقع نوعي از سيستم چند فاز است.

در نيروگاه هاي برق يك ژنراتور الكتريكي توان مكانيكي را به يك دسته از جريان هاي الكتريكي متناوب تبديل مي كند كه از هر كدام از سيم پيچ هاي الكترومغناطيسي يا سيم پيچ هاي ژنراتور توليد مي شوند. جريان ها همگي توابعي سينوسي از زمان هستند و همگي داراي فركانسي مشابه اما با زاويه هاي فاز متفاوت.
در يك سيستم سه فاز، زاويه ها داراي اختلاف 120 درجه اي (كه حداكثر جداسازي ممكن بين زاويه هاست) هستند. فركانس معمولاً در اروپا 50 هرتز و در ايالات متحده 60 هرتز است ليست كشورها به همراه پريزهاي خطوط برق، ولتاژها و فركانس ها را مشاهده كنيد.) سه فاز معمولاً توسط رنگ ها نشانه گذاري شده اند، كه به طور سنتي قرمز، زرد و آبي هستند.

خروجي ولتاژ ژنراتورها از چند صد ولت تا بالاي 20000 ولت تغيير مي كند. اين ولتاژ معمولاً توسط يك ترانسفورماتور به يك سطح ولتاژ بالاتري تبديل مي شود. علت اين افزايش ولتاژ هم كاهش تلفات است. توان برابر حاصلضرب ولتاژ و جريان است، بنابراين براي يك توان داده شده اگر شما ولتاژ را افزايش دهيد جريان كاهش مي يابد. تلفات گرمايي در يك خط انتقال با مجذور جريان متناسب است و در نتيجه اگر شما جريان را نصف كنيد، تلفات يك چهارم مي شود. به همين علت برخي از خطوط انتقال در سطح ولتاژي بيش از 500،000 ولت كار مي كنند.

در انتهاي خط انتقال، يك پست برق يا يك ترانسفورماتور، برق را از ولتاژ زياد خطوط انتقال به سه جريان متغير سينوسي با ولتاژ 120 ولت (در ايالات متحده) يا 230 ولت (در اروپا) جريان متناوب (Vac) تبديل مي كند. سپس اين برق از طريق چهار سيم به مدارات مصرف كننده ها در يك تابلوي فرمان اصلي، ارائه مي شود. يكي از سيم ها خنثي است يا در منبع برق زمين شده است، فازها يا سه خط ديگر، برق را به نقطه مقصد يا ترانسفورماتورهاي تغذيه مي رسانند. با برقراري اتصال بين يك فاز و سيم خنثي، ولتاژي معادل 120 ولت متناوب (يا 230 ولت متناوب) براي مدار متصل شده فراهم مي شود.

شبكه انتقال توان به گونه اي طراحي شده است كه هر فاز اندازه جرياني برابر را از خود عبور دهد، همه جريان هاي برگشتي از مناطق مسكوني مصرف كننده ها به نيروگاه، در جريان سيم خنثي سهيم هستند، اما سيستم سه فاز تضمين مي كند كه جمع جريان هاي برگشتي تقريباً صفر است.

اتصال بين دو فاز ولتاژي معادل 3√ يا 73/1 برابر ولتاژ تك فاز را ايجاد مي كند (208 ولت متناوب در ايالات متحده، 400 ولت متناوب در اروپا). شكل موج هاي داراي اختلاف فاز، با يكديگر جمع مي شوند تا يك پيك ولتاژي بالاتري را در شكل موج نهايي ايجاد كنند. چنين اتصالي را اتصال خط به خط مي نامند و معمولاً با يك مدار شكن دو قطب صورت مي گيرد. از اين نوع اتصال بيشتر براي گرمكن ها مانند يك گرمكن قرنيزي 2 كيلو وات و 208 ولت، استفاده مي كنند.

ولتاژهاي استاندارد ديگر موجود در آمريكاي شمالي شامل ولتاژهاي 240 ولت فاز به فاز، 277/480 ولت و 347/600 ولت مي شود. ولتاژ فاز به زمين (سطح ولتاژ پايين تر) دو مورد آخر عموماً تنها براي روشنايي به كار مي رود. ولتاژ 600 ولت در كانادا بسيار بيشتر از آمريكا، معمول است.

در موتورهاي سه فاز يا هواسازهاي كارا (براي مثال اكثر بخش هاي York كه بالاي 5/2 تن هستند، سه فاز اند) هر سه فاز برق مورد استفاده قرار مي گيرد چرا كه اين بهترين راه انتقال مقادير بزرگ توان الكتريكي است. گفتني است كه راه اندازي موتور، توان بيشتري را نياز دارد.

برخي دستگاه هايي ساخته شده اند كه يك سه فاز مصنوعي را از يك برق تك فاز تپ ـ وسط (240 ولت متناوب در ايلات متحده، با تفكيك زاويه 180 درجه) ايجاد مي كنند. اين عمل با ايجاد يك "زير فاز" سوم بين دو قطب انجام مي شود كه منجر به يك تفكيك فاز 90=90-180 درجه اي مي شود. بسياري از دستگاه هاي سه فاز بر اين اساس كار مي كنند، اما با يك فركانس پايين تر.

برخي اوقات برق تك فاز تپ ـ وسط240 ولت متناوب، به غلط برق "دو فاز" خوانده مي شود. بايد توجه شود كه يك سيستم دو فاز سيستمي است كه در آن دو ولتاژ داراي اختلاف 90 درجه اي هستند. براي مثال، اگر يكي از ولتاژها برابر
Cos 2п) * 60t)
و ديگري
sin 2п) * 60t)
است، آنگاه شما يك سيستم دو فاز داريد كه به عنوان سيستم عمود (يكي به عنوان بخش حقيقي و ديگري به عنوان بخش موهومي در نظر گرفته مي شود) نيز شناخته مي شود. يك سيستم دو فاز به ازاي 120 ولت متناوب خط به خنثي تقريباً ولتاژي معادل 7/169 ولت متناوب خط به خط را ايجاد مي كند.

سيستم هاي دو فاز تنها براي توان بالا به كار مي روند چرا كه آنها نياز به سيم هايي به همان تعداد سيم ها ي ارتباطي اتصال مثلث سه فاز دارند (براي مثال يكي براي سينوس، يكي براي كسينوس و يك سيم مشترك) و نيز سيستم دو فاز مقدار انرژي يكسان را در هر يك از سه سيم توزيع نمي كند (اگر چه سينوس و كسينوس متعادل اند، اما سيم خنثي مانند دو تاي ديگر نيست). گفته مي شود كه يك سيستم دو فاز توان مختلط ايجاد مي كند و چنين سيستم هايي در ولتاژهاي پايين تر به كار مي روند (براي مثال براي كاربردهاي ارتباطي، يا راه انداختن موتورهاي پله اي و مانند اين) و عموماً در سطح توان هاي بالا توزيع نشده اند.

در عمل، اگر ما فازورهاي يك سيستم دو فاز يا سه فاز را حول دايره واحد در صفحه مختلط رسم كنيم، داراي يك نوع از توان مختلط خواهيم بود.

يك سيستم فاز شكسته (تپ ـ وسط) 240 ولت متناوب، وقتي كه به صورت فازورها روي صفحه مختلط رسم شود، مي تواند كاملاً در طول محور حقيقي وجود داشته باشد. در واقع، اين كمبود قابليت توان مختلط است كه توانايي يك سيستم تغذيه را براي توليد يك ميدان دوار مغناطيسي تضعيف مي كند و اين ميدان دوار مغناطيسي است كه موجب گردش موثر موتورها مي شود. چنين برقي (فاز شكسته) براي گرمايش خوب است، اما مثلاً براي گرداندن يك هوا ساز خيلي بهتر است تا از توان مختلط استفاده كنيم.

چگونه تغذيه سه فاز را امتحان كنيم


يك تغذيه سه فاز الكتريكي شامل سه هادي فعال و يك زمين مي شود.
اگر كه تغذيه الكتريكي يك موتور القايي سه فاز بين پارامترهاي معيني نباشد، نمي تواند به درستي كار كند. اين پارامترهاي نوعي مانند مقابل اند: 208 يا 415 ولت بين فازها، 120 يا 240 ولت بين هر فاز و زمين، خطاي ولتاژ كمتر از 12 درصد مقادير نامي و اختلاف ولتاژ هر فاز كمتر از 5 درصد فاز ديگر.

در يك مدار موتور القايي سه فاز نوعي، يك مكان مناسب براي آزمايش در طرف خط راه انداز مستقيم موتور است.

چگونه دستگاه ها ي سه فاز را امتحان كنيم


دستگاه هاي سه فاز نظير پمپ ها، كمپرسورها، و ... بايستي فازهايشان به ترتيب درستي وصل شود تا از خرابي آنها جلوگيري شود. اين دستگاه ها عموماً هنگامي كه به اشتباه وصل شوند جريان كمتري را مي كشند و مي توانند به آساني توسط يك آمپروب (گيره روي آمپر متر) براي ميزان جرياني كه از شبكه مي كشند امتحان شوند.
براي مثال آزمايش يك هوا ساز كه داراي يك كمپرسور است، مي توان فهميد كه اگر اين وسيله به صورت غلطي به برق سه فاز متصل شود، جريان بسيار كمي را خواهد كشيد و بنابراين جاي هر كدام از دو سيم برق را مي توان براي تغيير فازها عوض كرد.

موتورهاي جيبي كوچكي وجود دارند كه از جهت چرخش آنها مي توان براي تشخيص توالي فازها استفاده كرد. اين موتورها گران هستند. يك جايگزين ارزا نتر استفاده از سه لامپ نئون و ديدن اينكه توالي فاز يا روشن شدن لامپ ها در چه جهتي مي چرخد، است.

موضوعاتي شامل آزمايش مقاومت سيم پيچ موتور و آزمايش مقاومت خطاي زمين بيان شده اند.
براي اطلاعات بيشتر راجع به مدارات سه فاز كليد واژه زير را مشاهده كنيد:

  • ترانسفورماتورهاي ستاره مثلث


پريزهاي الكتريكي سه فاز


برق سه فاز را مي توان با استفاده از يك پريز سه فاز يا با سه تايي كردن، تغذيه كرد. اغلب پريزها، پريزهاي دوتايي اند. حفره هاي بالايي و پاييني را مي توان در صورت تمايل از هم جدا كرد و براي مثال با مدار شكن هاي مجزايي با يك نول مشترك تغذيه شوند. اين كار را معمولاً در آشپزخانه ها انجام مي دهند كه در آنها احتمالاً يك بار زياد روي هر دو پريز اعمال مي شود. در اين صورت يك مدار شكن دو قطب تريپ (قطع كننده) مورد نياز است.

ايده دو برابر كردن را مي توان به سه برابر كردن گسترش داد، تا اينكه سه پريز دوگانه را بتوان با يك نول مشترك از يك منبع سه فاز تغذيه كرد. عموماً يك مدار شكن سه قطب تريپ عمومي 15 ميلي آمپر براي تغذيه چنين پريزي به كار مي رود. اين امر بارهاي سه فاز تكي را قادر مي سازد تا به صورت يك توالي فازي تغذيه شوند.
مثالي از اين بار يك لامپ با سه حباب است. براي داشتن عملكردي بدون چشمك زني، سه حباب هر كدام با يك دوشاخه جدا نصب مي شوند و با اختلاف فاز 120 درجه اي نسبت به هم از يك پريز سه تايي راه اندازي مي شوند. بالاي پريزها همان گونه كه در شكل نشان داده شده، لامپ هاي نئون قرار داده شده تا توالي فاز را در بارهاي سه تايي كه توالي صحيح فازها مورد نياز است نشان دهد.

منبع":http://autoir.com/page.php?id=297

آدم‌ها و كنترلر PID

گاهي مي‌شود آدم‌ها را شبيه يك كنترلر PID در نظر گرفت.
معمولا ضريب Pي‌شان زياد است و در نتيجه تا به عقيده‌اي برسند حسابي نوسان عقيدتي دارند. يك روز مي‌گويند آب سرد است، فردا مي‌گويند گرم است، روز بعد مي‌گويند سرد است، فرداي‌اش مي‌گويند گرم است تا اين‌كه آخر سر به اين نتيجه برسند كه ولرم است! بعضي‌ها هم كه ضريب D دارند و كافي است ناگهان متوجه بشوند كه تصور فعلي‌شان از حقيقت خيلي با آن‌چه مشاهده مي‌كنند فرق دارد كه ديگر شروع كنند به كفر گفتن. بعضي‌ها هم ضريب I در زندگي‌شان تاثيرگذار است و آرام آرام نظرشان عوض مي‌شود ولي در نهايت حسابي مي‌چسبند به آن‌چيزي كه ديده‌اند.

بقيه‌ي اوقات كه آدم‌ها شبيه كنترلر PID نيستند، لازم است با مدل‌هاي پيچيده‌تر توضيح‌شان داد! (;

توضيح مختصر: كنترلر چيزي است براي كنترل كردن چيزها. چيزها هم يعني چيزهايي مثل هواپيماي جت، بچه، ترميناتور و غيره.
اساس كار كنترلر اين است كه با مشاهده‌ي تفاوت بين نتيجه‌ي كار آن چيز و آن‌چه بايد باشد، تغييري در آن چيزها(!)‌ ايجاد كند تا در نهايت تفاوت از بين برود. در واقع كنترلر نقش تربيتي دارد.
كنترلر PID بر اساس سه مشخصه از آن تفاوت اين تغيير را ايجاد مي‌كند. مشخصه‌ي اول ميزان تفاوت است. هر چه تفاوت بيش‌تر باشد، كنترلر سعي مي‌كند تغييرات بيش‌تري در آن چيز(!) ايجاد كند (اين بخش Proportional كنترلر PID است). مشخصه‌ي دوم، كل تفاوت در طول زمان است. اگر گذشته‌ي يك چيزي خوب نبود لازم است هم‌چنان به تغيير در آن چيز اهتمام ورزيد. نتيجه‌اش اين مي‌شود كه اگر احساس كرديم يك چيزي خوب شده است اما بدانيم كه در گذشته بد بوده، نبايد يك‌هو فكر كنيم كار تمام شده و برويم پي كارمان. هم‌چنان بايد مثل قبل (حالا كمي رقيق‌القلب‌تر) با آن چيز رفتار كنيم (اين بخش Integrator كنترلر است). در نهايت اگر ببينيم تفاوت بين كمال مطلوب(!) و هستِ واقع(!) ناگهان زياد (كم) شد، ما هم بايد ناگهان در تصميم‌مان تغيير ايجاد كنيم. بخش سوم كنترلر PID (يعني بخش Derivative) به اين تغييرات توجه مي‌كند.
به عنوان مثال عملي فرض كنيد مي‌خواهيد بچه‌تان را تربيت كنيد تا دست توي دماغ‌اش نكند. اين‌كار را با شكلات‌دادن و كتك‌زدن انجام مي‌دهيد. بخش P مي‌گويد هر وقت بچه دست توي دماغ‌اش كرد، به ميزان فرورفتن انگشت (انتظار نداشتيد كه بگويم تا آرنج؟!) بايد كتك‌اش بزنيد. هر چقدر بيش‌تر رفت، بيش‌تر كتك بزنيد. كاملا به همان نسبت. بخش D مي‌گويد اگر خيلي سريع و ناگهاني دست‌اش را كرد توي دماغ‌اش كه مثلا به خيال خام خودش شما را غافل‌گير كند (حتي اگر نه خيلي زياد)، فورا خيلي محكم كتك‌اش بزنيد! بخش I هم مي‌گويد اگر ديديد تا همين پنج دقيقه‌ي پيش دست‌اش توي دماغ‌اش بود اما ديگر دست‌اش توي دماغ‌اش نيست، زياد گول‌اش را نخوريد، بلكه هم‌چنان كتك بزنيد! در ضمن شكلات را هم خودتان بخوريد. البته قبل‌اش دست‌تان را بشوييد.
اين‌كه اين روش موثر است يا خير، موضوع ديگري است. بستگي به اين دارد كه آن چيزي كه مي‌خواهيد كنترلش كنيد چطوري رفتار كند. براي بعضي سيستم‌ها اين خوب است، براي بعضي نه. در واقع نكته‌ي مهم اين است كه چقدر به هر كدام از عناصر P و I و D اهميت بدهيد. مثلا اگر به P خيلي اهميت بدهيد ممكن است باعث رفتارهاي عجيب و غريب از آن چيزتان بشود. بقيه عوامل نيز همين‌طورند. وظيفه‌ي مهندس كنترل اين است كه متناسب با بچه‌تان، شيوه‌ي مناسب كتك‌زدن را مشخص كند. البته اين موضوع هنوز در حال تحقيق است و خيلي خوب شناخته شده نيست.

منبع":http://autoir.com/page.php?id=294

تست های ترانس قدرت

تست های ترانس قدرت

 

ترانس های قدر ت در کارخانه سازنده تست اساسی شده و با ولتاژ های در حد نامی و بیشتر و جریانهای بزرگ، تست میشوند اما پس از حمل ترانس به مقصد جهت بررسی و تائید صحت عملکرد ترانس و نداشتن هر نوع عیب در زمان بهره برداری ، تستهایی بروی آن در محل (پست )با وسایل اندازه گیری دقیق اما قابل حمل ونقل انجام میشود که به اختصار در زیر آمده است:

1-     تست نسبت تبدیل :(RATIO)

2- تست پیوستگی تپ چنجر(TAP CONTINUE)

      3- تست مقاومت عایقی : (MEGGER)

4- تست جریان بی باری :(NO_LOAD)

5- تست شار مغناطیسی : flow

6- تست گروه برداری :(VECTOR GROUP)

7- تست اتصال کوتاه :(SHORT CIRCUIT)

8- تست مقاومت اهمی :(RESISTANCE)

9- تست تانژانت دلتا :(TAN- DELTA)

 

1-     تست نسبت تبدیل :(RATIO)

 در این تست با دادن ولتاژ به اولیه یا ثانویه ترانس ، ولتاژ طرف مقابل را به دقت اندازه گیری می کنند.در ترانسهای قدرت کاهنده معمولا طرف اولیه را ولتاژ 380 ولت می دهند و در ثانویه ولتاژ بین 110 تا 180( در تراسهای 20/63 کیلو ولت )بسته به ترانس و تپ های آن اندازه گیری خواهد شد.

 

2- تست پیوستگی تپ چنجر(TAP CONTINUE)

در این تست به اولیه ولتاژ 380 داده و در طرف ثانویه ولت مترهای آنالوگ دقیق قرار داده و در زمان تغییر تپ ها انحراف عقربه در هر سه فاز را بررسی کرده تا بقول معروف عقربه پس نزند . در زمان تغییر تپ میبایست به ترتیب زیر عمل نمود.

    1-2....1-2-3....2-3-4....3-4-5 و... یعنی یک پله پائین ودو پله بالا (در روند افزایشی تپ )

 

      3- تست مقاومت عایقی : (MEGGER)

این تست را به کمک دستگاه میگر انجام می دهند و در زمانهای 15 ثانیه و60 ثانیه و5 دقیقه و 10 دقیقه اندازه گیری میکنند. اندازه گیری به قرار زیر است:

LV/HV  

HV +E/LV

LV+E/HV

در این تست سرهای اولیه اتصال کوتاه میشود و همینطور در ثانویه.(بهتر است در مرحله اول انجام شود)

 

4- تست جریان بی باری :(NO_LOAD)

 در این تست با دادن ولتاژ به اولیه و در صورتی که ثانویه مدار باز است جریان آنرا با آمپر متر دقیق اندازه گیری می کنیم . برای ثانویه هم به همین منوال است . در اتصال ستاره نسبت آمپر های سه فاز 1-0.8-1 و در اتصال مثلث 1-1-1.3 است.

 

5- تست شار مغناطیسی : flow

در این تست با دادن ولتاژ تک فاز به سر های هر فاز و نول (در اتصال ستاره ) جریان هر فاز را اندازه گیری و ولتاژ سیم پیچ طرف مقابل را می خوانیم.

 

6- تست گروه برداری :(VECTOR GROUP)

در این تست سرهای مشابه ،در یک فاز را اتصال کوتاه کرده (مثلا U-u) و ولتاژ سه فاز را تزریق میکنیم و ولتاژ را برای تمای سرها نسبت به هم میخوانیم.

 

7- تست اتصال کوتاه :(SHORT CIRCUIT)

این تست را با اتصال کوتاه کردن در ثانویه انجام میدهیم و جریان در اولیه و ثانویه را پس از وصل ولتاژ 380 به اولیه قرائت و ثبت میکنیم.

 

8- تست مقاومت اهمی :(RESISTANCE)

در این تست ولتاژ دی سی (مثلا 12 ولت ) را به سرهای هر فاز با سر نول در اتصال ستاره و هر دو فاز در اتصال مثلث تزریق کرده و جریان عبوری را اندازه گیری میکنیم.(این تست بهتر است در آخرین مرحله انجام گیرد)

 

9- تست تانژانت دلتا :(TAN- DELTA)

در این تست با دستگاه مخصوص این تست حالتهای مختلف در ترانس را میشود بررسی نمود و ظرفیت خازنی بین هر نقطه از ترانس را اندازه گیری کرد.

منبع:http://ibis.blogfa.com/post-67.aspx

گذري بر ميكروكنترلر

گذري بر ميكروكنترلر

مقدمه :

از اوايل دهه هشتاد كارخانجات ساخت مدارهاي مجتمع به طراحي و توليد پردازنده هائي با كاربرد هاي خاص نمودند. يكي از اين محصولا‌ت كه در سالهاي اخير مصرف بسيار زيادي پيدا كرده است ميكروكنترلر ها مي باشند.

با ساخت ميكرو كنترلرها تحول شگرفي در ساخت تجهيزات الكترونيكي نظير لوازم خانگي، صنعتي، پزشكي ، تجاري و ... به وجود آمده است كه بدون آن تصور تجهيزات و وسايل پيشرفته امروز غير ممكن است. به عنوان مثال مي توان از ربات ها ، تلفن همراه و انواع سيستم هاي اتوماسيون نظير 2DCS,1PLD وانواع وسايل ديجيتالي مدرن ديگر نام برد.

علل پيدايش :

از آنجايي كه در مصارف صنعتي و ... جهت كنترل ماشينهاي صنعتي و... كنترل فرآيند معمولا‌ً با ارسال فرمانهاي مختلف و دريافت اطلا‌عات از قسمتهاي مختلف، اندازه گيري زمان ، شمارنده ، مبدل آنالوگ به ديجيتال(3A/D) و بالعكس(D/A) ، ارسال و دريافت اطلا‌عات به صورت سريال و موازي و ... نياز مي باشد ، شركتهاي ساخت قطعات الكترونيكي درصدد آن برآمدند تا با ساخت سيستمي يكپارچه همراه با يك CPU قدرتمند تمامي امكانات فوق را دربر داشته باشد.

شركتهاي توليد كننده :

ازجمله شركتهايي كه در اين زمينه فعاليت داشته اند : شركت اينتل با سري چيپهاي AT8050,8051,8052,...، شركت زايلوگ باسري چيپهاي Z8601,8602,8603,...و شركت موتورولا‌ با سري چيپهاي 6811A1,A2,...را مي توان نام برد. شركتهاي ديگري مانند هيتاچي و ... در اين زمينه توليداتي داشته اند ولي عمده ترين توليدكنندگان ميكروكنترلر كه به صورت حرفه اي عمل نموده اند سه شركت فوق مي باشند.

ميكروكنترلر سري 8X51 :

 اين ميكروكنترلر ساخت شركت اينتل و همانند تمامي ميكرو كنترلر ها علا‌وه برCPU امكانات ديگري نيز دارا مي باشد.

قسمتهاي مهم آن عبارتند از:

1- واحد اصلي يا CPU

2- حافظه داده داخلي ( 128 تا 512 بايت )

3- حافظه برنامه ROMيا EPROMيا E2PROMتا 8k

4- چهار پورت 8 بيتي (ورودي- خروجي)

5- تايمر و يا شمارنده 16 بيتي (از يك تا 3عدد)

6- پورت سريال

7- وقفه ( خارجي 2 عدد داخلي 3 عدد)

8- اسيلا‌تور داخلي (كريستال خارجي تا 24MHz)

9- آدرس دهي فضاي حافظه داده خارجي تا 64k

10- آدرس دهي فضاي حافظه برنامه خارجي تا 64k

11- فضاي آدرس دهي بيت به بيت (تا 210 بيت) به همراه دستورات بيتي

12- رجيستر هاي كنترلي

13- واحد كنترل باسهاي آدرس و ديتا

 

منابع

  • ميكروكنترلر ، مولٿين : فيض ا... خاكپور ، احمد آقاجاني ، ا‌نتشارات ناقوس.
  • اصول طراحي سيستمهاي ميكروپروسسوري ، نوشته دكتر سيد احمد معتمدي ، انتشارات مولف.
  • اينترنت (www.Atmel.com).
  • Distributed Control System
  • Distributed Control System
  • Programmable Logic Control
  • http://ibis.blogfa.com/post-44.aspx

تکرار کننده ها

از تکرار کننده های غیر فعال عمدتا در موارد زیر استفاده می شود:

1- تعریف و کاربرد

. عبور از موانع طبیعی

. تغییر مسیر امواج رادیوئی

. افزایش ضریب اطمینان مسیر

. کوتاه نمودن طول موجبر و کاهش افت کسیر کانال

2- انواع تکرار کننده های غیر فعال

. آینه های مخابراتی

. پریسکوپ ها

. آنتن های پشت به پشت

آینه های مخابراتی دارای بهره می باشند لکن به علل زیر:

. شکسته شدن مسیر به دو مسیر مجزا و افزایش افت فضای آزاد کلی

. افزایش طول مسیر بین فرستنده و گیرنده

معمولا میزان بهره آن کمتر از افت های ناشی از دو مورد فوق است. یادآوری می گردد در خصوص دو نوع افت یاد شده نیز اثر اولی به مراتب بیشتر است.

ویژگی های تکرار کننده غیر فعال

به هر علتی که استفاده صحیحی از تکرار کننده غیر فعال بعمل آید مزایا و ویژگی های زیر را در بر خواهد داشت:

. طول عمر بیشتر بعلت عدم وجود عناصر فعال

. نگه داری کمتر و در نتیجه هزینه جاری کمتر

. عدم نیاز به تغذیه الکتریکی

. عدم نیاز به جاده دسترسی

. عدم نیاز به ساختمان نگه بانی

. عدم آلودگی محیط زیست

. هزینه اولیه و جاری به مراتب کمتر از یک ایستگاه فعال

منبع:

http://www.sargoleman.blogfa.com/