تنظیم کننده فرکانس مولد( گاور نر )Governor

اساس کار گاورنرها را می توان به صورت وسیله ای دانست که تبدیل کننده تغییرات سرعت توربین (فرکانس ژنراتور)به میزان باز و بسته شدن  دریچه های کنترل آب در نیروگاههای آبی یا شیرهای کنترل بخارورودیبه توربین (در نیروگاههای بخاری)است بیان نمود.

سیستم کنترل فرکانس

با توجه به تغییر مصرف بار شبکه  در ساعات مختلف ولزوم تامین  مصرف شبکه لازم است تا قدرت تولیدی ژنراتورها  به طور منظم کنترل شود.قدرت خروجی یک ژنراتور  با تغییر دادن توان مکانیکی آن کنترل می شود برای این کار با باز کردن و بستن شیر بخار (یا دریچه آب) جریان بخار (ویا آب)ورودی به توربین های بخاری (یا آبی)تنظیم می شود.وباعث کنترل مکانیکی ودر نتیجه قدرت اکتیو خروجی ژنراتور  می گردد.اگر قدرت مصرفی بار افزایش یابد باید

شیر بخار(یا دریچه آب)بیشتر باز شودتا به همان میزان  قدرت ژنراتور افزایش یابدوچنانچه قدرت مصرفی بار کاهش یابد باید عمل بسته شدن شیرها  به نسبت مشخص ومعینی صورت گیرد.لازم به ذکر است که عدم توازن قدرت را می توان از تاثیر آن به سرعت ویا فرکانس ژنراتور احساس نمود.زیرا در صورت کاهش بار یا اضافه بودن تولید  ژنراتور تمایل به افزایش سرعت  وفرکانس خود دارد ودر صورت افزایش بار و کمبود تولید سرعت وفرکانس ژنراتور رو به کاهش می رود. انحراف فرکانس شبکه (یا سرعت محور زنراتور)از مقدار نامی آن به عنوان سیگنالی جهت تحریک سیستم کنترل اتوماتیک اتخاب می شود زیرا توازن قدرت اکتیو به منزله ثابت بودن فرکانس سیستم  است .

مقدمه

در عمل تمام تجهیزات مورد استفاده در یک سیستم قدرت برای سطح ولتاژ معینی (که به آن ولتاژ نامی گفته می شود)طراحی می شود .اگر ولتاژ سیستم از مقدار نامی کمتریا بیشتر شود .کارایی تجهیزات سیستم  واحتمالا عمر آنها کاهش میابد مثلا گشتاور یک موتور القایی  متناسب با مجوز ولتاژ پایانه آن است .شار نوری لامپها  شدیدا وابسته به ولتاژ می باشند  در سیستمهای قدرت موارد مشابه این امربسیار است .علاوه بر بارها اغلب عناصر یک شبکه قدرت مصرف کننده توان راکتیو هستند
بنا براین باید توان راکتیو در بعضی نقاط شبکه تولید وسپس  به محل های مورد نیاز منتقل شود .با تزریق توان راکتیو به بعضی نقاط شبکه و انجام پخش بار شبکه مشخص می شود که ولتاژ تمام شین ها بالا می رود که بیش از همه روی ولتاژ همان شین تزریقی تاثیر می گذارد البته این تزریق توان راکتیو  تا ثیر چندانی بر روی فرکانس شبکه ندارد .بنابراین می توان گفت که توان راکتیو وولتاژ شبکه  دارای تغییراتی در جهت یکسان هستند که آنراکانالکنترلQ_V(توان راکتیو-ولتاژ)یا(مگاوار-ولتاژ)می نامیم. با توجه به اینکه توان راکتیو مصرفی بارهای شبکه در ساعات مختلف در حال تغییر است ولذا ولتاژ وتوان راکتیوباید دائما کنترل شود .در ساعات حد اکثر بار توان راکتیو مورد نیاز شبکه بیشتر می شود ودر نتیجه نیاز به تولید  راکتیو زیادی دزر شبکه می با شد .اگر توان راکتیو مورد شارتامین نشود احباراولتاژ نقاط مختلف شبکه کاهش یافته ممکن است از محدوده مجاز خود خارج شوند بدین منظور نیروگاهها دارای سیستم کنترل ولتاژ هستند.کهدر این سیستمها کاهش ولتاژپایانه ژنراتور را حس می کنند تا فرمانهای کنترل لازم بای بالا بردن جریان  تحریک ژنراتور((ودر نتیجه افزایش ولتاژ تا سطح ولتاژ نامی))صادر نماید با افزایش جریان تحریک ((فوق تحریک))توان راکتیو توسط ژنراتور تولید می شود.توازن توان راکتیو شبکه تضمینی بر ثابت بودن ولتاژ((وکنترل توان راکتیوبه منزله کنترل ولتاژ شبکه می باشد)).پس به طور کلی کنترل توان راکتیو وولتاژ شبکه به صورت زیر انجام می پذذیرد:

1-  کنترل تحریک ژنراتور

2-  تزریق توان راکتیو به شبکه قدرت توسط جبران کننده هایی که به صورت موازی وصل می شوند مثل:خازن کنوانسور سنکرون

3-  جابه جا کردن توان راکتیو در شبکه توسط تغییر تیپ ترانسفور ماتورهای قدرت

4-  کم کردن راکتانس القایی خطوط انتقال بابت خازنهای سری

 

در این بخش تکیه اساسی برروی روشهای مختلف کنترل ولتاژ ژنراتورها توسط تغییر در جریان تحریک آنها می باشد.

اصول عملکرد سیستم تحریک:

وظیفه عملکرد سیستم تحریک آن است که با تغییر جریان DCسیم پیچ تحریک واقع بر روی رتور نیروی محرکه تولید شده ژنراتور را کنترل نماید .با تغییر نیروی محرکه ژنراتور نه تنها ولتاژ خروجی قابل تنظیم است بلکه ضریب قدرت دامنه جریان نیز کنترل می شود .این موضوع را برروی مدار معادل ماشین سنکرون بیان می کنیم .شکل نمایش سیستماتیک ما شین سنکرون را در حالت پایدار نمایش می دهد.ملاحظه می شود که با افزایش جریان تحریک شرایط تعادل جدیدی ایجاد می شود که دارای خصوصیات زیر است:

1-زاویه گشتاور کاهش یافته است.

2-دامنه جریان افزایش یافته است.

3-ضریب قدرت پس فازتر شده است.

4-قدرت خروجی ولتاژ پایانه ثابت هستند.

منبع:http://www.ele.ir/index.php?option=com_content&task=view&id=43&Itemid=47

ساختار نيروگاه هاي اتمي جهان

رحسب نظريه اتمي عنصر عبارت است از يك جسم خالص ساده كه با روش هاي شيميايي نمي توان آن را تفكيك كرد. از تركيب عناصر با يكديگر اجسام مركب به وجود مي آيند. تعداد عناصر شناخته شده در طبيعت حدود 92 عنصر است.
هيدروژن اولين و ساده ترين عنصر و پس از آن هليم، كربن، ازت، اكسيژن و... فلزات روي، مس، آهن، نيكل و... و بالاخره آخرين عنصر طبيعي به شماره 92، عنصر اورانيوم است. بشر توانسته است به طور مصنوعي و به كمك واكنش هاي هسته اي در راكتورهاي اتمي و يا به كمك شتاب دهنده هاي قوي بيش از 20 عنصر ديگر بسازد كه تمام آن ها ناپايدارند و عمر كوتاه دارند و به سرعت با انتشار پرتوهايي تخريب مي شوند. اتم هاي يك عنصر از اجتماع ذرات بنيادي به نام پرتون، نوترون و الكترون تشكيل يافته اند. پروتون بار مثبت و الكترون بار منفي و نوترون فاقد بار است.
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبي (جدول مندليف) مشخص مي كند. اتم هيدروژن يك پروتون دارد و در خانه شماره 1 جدول و اتم هليم در خانه شماره 2، اتم سديم در خانه شماره 11 و... و اتم اورانيوم در خانه شماره 92 قرار دارد. يعني داراي 92 پروتون است.
ايزوتوپ هاي اورانيوم

تعداد نوترون ها در اتم هاي مختلف يك عنصر همواره يكسان نيست كه براي مشخص كردن آنها از كلمه ايزوتوپ استفاده مي شود. بنابراين اتم هاي مختلف يك عنصر را ايزوتوپ مي گويند. مثلاً عنصر هيدروژن سه ايزوتوپ دارد: هيدروژن معمولي كه فقط يك پروتون دارد و فاقد نوترون است. هيدروژن سنگين يك پروتون و يك نوترون دارد كه به آن دوتريم گويند و نهايتاً تريتيم كه از دو نوترون و يك پروتون تشكيل شده و ناپايدار است و طي زمان تجزيه مي شود.

ايزوتوپ سنگين هيدروژن يعني دوتريم در نيروگاه هاي اتمي كاربرد دارد و از الكتروليز آب به دست مي آيد. در جنگ دوم جهاني آلماني ها براي ساختن نيروگاه اتمي و تهيه بمب اتمي در سوئد و نروژ مقادير بسيار زيادي آب سنگين تهيه كرده بودند كه انگليسي ها متوجه منظور آلماني ها شده و مخازن و دستگاه هاي الكتروليز آنها را نابود كردند.

غالب عناصر ايزوتوپ دارند از آن جمله عنصر اورانيوم، چهار ايزوتوپ دارد كه فقط دو ايزوتوپ آن به علت داشتن نيمه عمر نسبتاً بالا در طبيعت و در سنگ معدن يافت مي شوند. اين دو ايزوتوپ عبارتند از اورانيوم 235 و اورانيوم 238 كه در هر دو 92 پروتون وجود دارد ولي اولي 143 و دومي 146 نوترون دارد. اختلاف اين دو فقط وجود 3 نوترون اضافي در ايزوتوپ سنگين است ولي از نظر خواص شيميايي اين دو ايزوتوپ كاملاً يكسان هستند و براي جداسازي آنها از يكديگر حتماً بايد از خواص فيزيكي آنها يعني اختلاف جرم ايزوتوپ ها استفاده كرد. ايزوتوپ اورانيوم 235 شكست پذير است و در نيروگاه هاي اتمي از اين خاصيت استفاده مي شود و حرارت ايجاد شده در اثر اين شكست را تبديل به انرژي الكتريكي مي نمايند. در واقع ورود يك نوترون به درون هسته اين اتم سبب شكست آن شده و به ازاي هر اتم شكسته شده 200 ميليون الكترون ولت انرژي و دو تكه شكست و تعدادي نوترون حاصل مي شود كه مي توانند اتم هاي ديگر را بشكنند. بنابراين در برخي از نيروگاه ها ترجيح مي دهند تا حدي اين ايزوتوپ را در مخلوط طبيعي دو ايزوتوپ غني كنند و بدين ترتيب مسئله غني سازي اورانيوم مطرح مي شود.

ساختار نيروگاه اتمي

به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم.

طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران 15 نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در 28 مارس 1979 و فاجعه چرنوبيل (Tchernobyl) در روسيه در 26 آوريل 1986، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد.

نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از:

1- ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است.

عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم 235 عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر 100 اتم شكسته شده 247 عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد.

در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با 200 ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد. اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد. به عنوان مثال نيروگاهي كه داراي 10 تن اورانيوم طبيعي است قدرتي معادل با 100 مگاوات خواهد داشت و به طور متوسط 105 گرم اورانيوم 235 در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم 238 اورانيوم 239 به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم 239 تبديل مي شود كه خود مانند اورانيوم 235 شكست پذير است. در اين عمل 70 گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد.

2- نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت) به عنوان نرم كننده نوترون به كار برده مي شوند.

3- ميله هاي مهاركننده: اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند.

4- مواد خنك كننده يا انتقال دهنده انرژي حرارتي: اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند.

غني سازي اورانيم

سنگ معدن اورانيوم موجود در طبيعت از دو ايزوتوپ 235 به مقدار 7/0 درصد و اورانيوم 238 به مقدار 3/99 درصد تشكيل شده است. سنگ معدن را ابتدا در اسيد حل كرده و بعد از تخليص فلز، اورانيوم را به صورت تركيب با اتم فلئور (F) و به صورت مولكول اورانيوم هكزا فلورايد UF6 تبديل مي كنند كه به حالت گازي است. سرعت متوسط مولكول هاي گازي با جرم مولكولي گاز نسبت عكس دارد اين پديده را گراهان در سال 1864 كشف كرد. از اين پديده كه به نام ديفوزيون گازي مشهور است براي غني سازي اورانيوم استفاده مي كنند.در عمل اورانيوم هكزا فلورايد طبيعي گازي شكل را از ستون هايي كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور مي دهند. منافذ موجود در جسم متخلخل بايد قدري بيشتر از شعاع اتمي يعني در حدود 5/2 انگشترم (000000025/0 سانتيمتر) باشد. ضريب جداسازي متناسب با اختلاف جرم مولكول ها است.روش غني سازي اورانيوم تقريباً مطابق همين اصولي است كه در اينجا گفته شد. با وجود اين مي توان به خوبي حدس زد كه پرخرج ترين مرحله تهيه سوخت اتمي همين مرحله غني سازي ايزوتوپ ها است زيرا از هر هزاران كيلو سنگ معدن اورانيوم 140 كيلوگرم اورانيوم طبيعي به دست مي آيد كه فقط يك كيلوگرم اورانيوم 235 خالص در آن وجود دارد. براي تهيه و تغليظ اورانيوم تا حد 5 درصد حداقل 2000 برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پي درپي لازم است تا نسبت ايزوتوپ ها تا از برخي به برج ديگر به مقدار 01/0 درصد تغيير پيدا كند. در نهايت موقعي كه نسبت اورانيوم 235 به اورانيوم 238 به 5 درصد رسيد بايد براي تخليص كامل از سانتريفوژهاي بسيار قوي استفاده نمود. براي ساختن نيروگاه اتمي، اورانيوم طبيعي و يا اورانيوم غني شده بين 1 تا 5 درصد كافي است. ولي براي تهيه بمب اتمي حداقل 5 تا 6 كيلوگرم اورانيوم 235 صددرصد خالص نياز است.

عملا در صنايع نظامي از اين روش استفاده نمي شود و بمب هاي اتمي را از پلوتونيوم 239 كه سنتز و تخليص شيميايي آن بسيار ساده تر است تهيه مي كنند. عنصر اخير را در نيروگاه هاي بسيار قوي مي سازند كه تعداد نوترون هاي موجود در آنها از صدها هزار ميليارد نوترون در ثانيه در سانتيمتر مربع تجاوز مي كند. عملاً كليه بمب هاي اتمي موجود در زراد خانه هاي جهان از اين عنصر درست مي شود.روش ساخت اين عنصر در داخل نيروگاه هاي اتمي به صورت زير است: ايزوتوپ هاي اورانيوم 238 شكست پذير نيستند ولي جاذب نوترون كم انرژي (نوترون حرارتي هستند. تعدادي از نوترون هاي حاصل از شكست اورانيوم 235 را جذب مي كنند و تبديل به اورانيوم 239 مي شوند. اين ايزوتوپ از اورانيوم بسيار ناپايدار است و در كمتر از ده ساعت تمام اتم هاي به وجود آمده تخريب مي شوند. در درون هسته پايدار اورانيوم 239 يكي از نوترون ها خودبه خود به پروتون و يك الكترون تبديل مي شود.بنابراين تعداد پروتون ها يكي اضافه شده و عنصر جديد را كه 93 پروتون دارد نپتونيم مي نامند كه اين عنصر نيز ناپايدار است و يكي از نوترون هاي آن خود به خود به پروتون تبديل مي شود و در نتيجه به تعداد پروتون ها يكي اضافه شده و عنصر جديد كه 94 پروتون دارد را پلوتونيم مي نامند. اين تجربه طي چندين روز انجام مي گيرد.
منبع:http://amnuc.com/index.php?option=com_content&task=view&id=93&Itemid=54

اصول و مبانی ترمیستور

ترميستور از مواد نيمه هادي ساخته مي شود. ترميستور از اكسيد فلزاتي چون منگنز، نيكل، كبالت، مس و يا آهن همراه با سيليكون ساخته مي گردد. رنج دماي آن  50- تا 150 و نهايت 300 درجه سانتيگراد مي باشد. در بيشتر مصارف مقاومت آن در دماي 25 درجه سانتيگراد( در RTD مقاومت آن نسبت به صفر درجه محاسبه مي شد در ترميستورها نسبت به 25 درجه سانتيگراد محاسبه مي شود.) بين 100 تا 100كيلو اهم مي باشد. البته ترميستورهايي با مقاومت اوليه پايين تر از 10اهم و بالاتر از 40مگا اهم نيز استفاده مي شود.

 

منبع:http://amnuc.com/index.php?option=com_content&task=view&id=90&Itemid=57

خلاصه ای در مورد سیکل ترکیبی  

توضيح سيكل :

نيروگاه چرخه تركيبي به نيروگاهي گفته مي‌شود كه در آن هم در توربين گازي و هم در توربين بخار قدرت توليد مي‌شود. بدين ترتيب كه پس از توليد پودر سوخت (زغال‌سنگ يا گازوئيل)، اين پودر به اتاق احتراق رفته و پس از انفجار، گازي در اتاق توليد مي‌شود كه از اين گاز براي چرخاندن توربين گازي استفاده مي‌شود. اين گاز پس از خروج از توربين گازي هنوز داراي حرارت بالايي است كه با استفاده از اين حرارت در يك مولد توليد بخار، مي‌توان بازده نيروگاه را افزايش داد. بدين ترتيب از اين گاز براي توليد بخار در يك مولد(ديگ) بخار استفاده شده و بخار توليد شده در نيروگاه بخار مورد استفاده قرارگرفته و توربين بخاررا به حركت درمي‌آورد. بخار زيركش شده (خروجي) از مولد بخار نيز چگالش يافته وپس از تبديل شدن به آب، دوباره به مخزن آب و سپس به ديگ توليد بخار منتقل مي‌شود و اين چرخه اساس كار نيروگاه سيكل تركيبي مي‌باشد. 

مزيت چرخ تركيبي :

چرخ تركيبي علاوه بر داشتن بازده و توان بالا، داراي مزاياي ديگري چون انعطاف‌پذيري، راه‌اندازي سريع، مناسب بودن براي تأمين بار پايه و عملكرد دوره‌اي و بازده بالا در محدودة گسترده‌اي از تغييرات بار برخوردار است. همچنين امكان استفاده از انواع سوختها (زغال‌سنگ، گازوئيل، گاز) وجود دارد.  

عيب چرخه تركيبي:

عيب اين چرخه پيچيدگي آن است زيرا اساساً در اين چرخه از دو نوع تكنولوژي متفاوت استفاده شده است. 

قسمت‌هاي مختلف چرخه و انواع آنها:

دمنده‌ها: براي ورود و خروج هواي مورد نياز در محفظة احتراق از آنها استفاده مي‌شود.پاك‌كنندة گاز: براي تصفيه و گرفتن ذرات گوگرد در گاز از آن استفاده مي‌شود.پيش گرم كن هوا: براي صرفه‌جويي در مصرف سوخت هواي مورد نياز در احتراق را توسط پيش‌گرم كن گرم مي‌كنند.اتاق احتراق : شامل دمنده‌هايي (كمپرسور) براي ورود و خروج هوا، پودر گاز و دستگاههاي جرقه‌زن براي ايجاد انفجار مي‌باشد.توربينها : داراي انواع مختلفي مي‌باشد از جمله توربين ضربه‌اي تك‌طبقه، توربين ضربه‌اي مركب و توربين ضربه‌اي مركب سرعتي.بازگرمايش بخار : براي افزايش راندمان دوچرخه، بخار خروجي از مولد بخار را يك بار ديگر در مبادله‌كن گرما، كه گرماي خود را از ديگ مي‌گيرد، گرم كرده و مورد استفاده قرارمي‌دهند.چگالنده : براي تبديل بخار خروجي از مولد بخار به آب (چگالش آب) از چگالندة آب استفاده مي‌شود. چگالنده داراي دو نوع تماس مستقيم و سطحي مي‌باشد. چگالنده نوع تماس مستقيم داراي سه نوع افشانه‌اي، بارومتر يك و جتي مي‌باشد.گرمكن‌هاي آب تغذيه: براي آماده‌سازي آب براي ورود به ديگ توليد بخار، ابتدا آب را در گرمكن هاي آب تغذيه، گرم مي‌كنند. گرمكن‌ها داراي سه نوع بازيا تماس مستقيم، بسته يا تخليه پي‌رونده، بسته يا تخلية پيش‌رونده مي‌باشند.برج‌هاي خنك كننده: براي خنك كردن آب تغذيه و يا چگالش بخار از آنها استفاده مي‌شود. برج‌هاي خنك كننده داراي دو نوع تر و خشك مي‌باشند برج‌هاي نوع خشك نيز داراي دو نوع مستقيم و غيرمستقيم مي‌باشند.
منبع:http://amnuc.com/index.php?option=com_content&task=view&id=31&Itemid=56

برنامه زمانبندي انتخاب واحد نيمسال اول سال تحصيلي 87 - 86دانشگاه علامه محدث نوری

برنامه زمانبندي انتخاب واحد نيمسال اول سال تحصيلي 87 - 86
رديف
ايام هفته
تاريخ ثبت نام
عنوان رشته تحصيلي
 
1
 
سه شنبه
 
23/11/1386
كليه رشته هاي تحصيلي ورودي 77 الي 83
كارشناسي ارشد حقوق ورودي 84 و 85 و 86
2
چهارشنبه
24/11/1386
ورودي هاي 84  رشته هاي (كارشناسي  حقوق حسابداري اقتصاد مديريت  – مترجمي زبانمنابع طبيعينرم افزار)
3
پنج شنبه
25/11/1386
ورودي هاي 84  رشته هاي (كارداني  شيلات كامپيوترفني برقمعماريحسابداري   فني عمران)
كارشناسي ناپيوسته الكترونيك  معماريسخت افزاركارشناسي حقوق85 )
4
شنبه
27/11/1386
وروديهاي 85  رشته هاي (كارشناسي حسابداري مترجمي زبان   اقتصاد  مديريت منابع طبيعي  نرم افزار كارداني كامپيوتر  كارداني فني عمران)
5
يكشنبه
28/11/1386
وروديهاي 85  رشته هاي (كارداني فني برق معماري  حسابداري     كارشناسي ناپيوسته ابزاردقيق و الكترونيك)
6
دوشنبه
29/11/1386
وروديهاي 85  رشته هاي (كارشناسي ناپيوسته سخت افزار معماري حسابداري )
ورودي هاي86  رشته هاي (كارشناسي حقوق حسابدارياقتصاد مديريت)
7
سه شنبه
30/11/1386
وروديهاي 86  رشته هاي (مترجمي زبان    منابع طبيعي    نرم افزار  كارداني شيلات  سخت افزار  برق   حسابداري  فني عمران )
8
چهارشنبه
1/12/1386
وروديهاي 86  رشته هاي (  كارداني معماري  كارشناسي ناپيوسته شبكه انتقال و توزيع  كنترل و ابزاردقيق   كاربردي الكترونيك )
6
پنج شنبه
2/12/1386
وروديهاي 86  رشته هاي (كارشناسي ناپيوسته سخت افزار  كاربردي معماري  حسابداري عمران )

اطلاعات كلي در مورد ميكروكنترلرهاي AVR

ميكروهاي AVR داراي انعطاف پذيري غير قابل مقايسه و بي همتايي هستند.آنها قادر به تركيب هر نوع كدي با يك معماري كارامد از طريق زبانهاي C و Assembly هستند و قادرند از طريق اين برنامه ها تمام پارامترهاي ممكن در يك سيكل يا چرخه ماشين را با دقت بسيار بالا هماهنگ كنند.ميكرو AVR داراي معماريي است كه ميتواند در تمام جهات مورد استفاده شما،عمل كند ميكرو AVR معماريي دارد كه براي شما كارايي 16 بيتي ارائه مي دهد كه البته قيمتش به اندازه يك 8 بيتي تمام مي شود.


بهره هاي كليدي AVR :

داراي بهترين MCU براي حافظه فلش در جهان ! (MCU: Master Control Unit)

داراي سيستمي با بهترين هماهنگي

داراي بالاترين كارايي و اجرا در CPU (يك دستورالعمل در هر سيكل كلاك)

داراي كدهايي با كوچكترين سايز

داراي حافظه خود برنامه ريز

داراي واسطه JTAG كه با IEEE 1149.1 سازگار است

 (IEEE: Institute of Electrical and Electronics Engineers.)

داراي سخت افزار ضرب كننده روي خود

داراي بهترين ابزارها براي پيشرفت و ترقي

داراي حالات زيادي براي ترفيع دادن يا Upgrade .

 واژگان كليدي AVR :

 ميكرو كنترلر AVR به منظور اجراي دستورالعملهاي قدرتمند در يك سيكل كلاك(ساعت) به اندازه كافي سريع است و مي تواند براي شما آزادي عملي را كه احتياج داريد به منظور بهينه سازي توان مصرفي فراهم كند.

ميكروكنترلر AVR بر مبناي معماري  RISC(كاهش مجموعه ي دستورالعملهاي كامپيوتر) پايه گذاري شده و مجموعه اي از دستورالعملها را كه با 32 ثبات كار ميكنند تركيب مي كند.

به كارگرفتن حافظه از نوع Flash  كه AVR ها به طور يكسان از آن بهره مي برند از جمله مزاياي آنها است.

يك ميكرو AVR مي تواند با استفاده از يك منبع تغذيه 2.7 تا 5.5 ولتي از طريق شش پين ساده در عرض چند ثانيه برنامه ريزي شود يا Program شود.

ميكروهاي AVR در هرجا كه باشند با 1.8 ولت تا 5.5 ولت تغذيه مي شوند البته با انواع توان پايين (Low Power)كه موجودند.

راه حلهايي كه AVR پيش پاي شما مي گذارد، براي يافتن نيازهاي شما مناسب است:

با داشتن تنوعي باور نكردني و اختيارات فراوان در كارايي محصولات AVR، آنها به عنوان محصولاتي كه هميشه در رقابت ها پيروز هستند شناخته شدند.در همه محصولات AVR مجموعه ي دستورالعملها و معماري يكسان هستند بنابراين زماني كه حجم كدهاي دستورالعمل شما كه قرار است در ميكرو دانلود شود به دلايلي افزايش يابد يعني بيشتر از گنجايش ميكرويي كه شما در نظر گرفته ايد شود مي توانيد از همان كدها استفاده كنيد و در عوض آن را در يك ميكروي با گنجايش بالاتر دانلود كنيد.

خانواده هاي محصولات AVR :

Tiny AVR:

ميكروكنترلري با اهداف كلي و با بيش از 4 كيلو بايت حافظه فلش و 128 بايت حافظه استاتيك و قابل برنامه ريزي است.(منظور از حافظه استاتيك SRAM و حافظه قابل برنامه ريزي EEPROM است.)

Mega AVR:

اين نوع ميكروها قابليت خود برنامه ريزي دارند و مي توان آنها را بدون استفاده از مدارات اضافي برنامه ريزي كرد همچنين بيش از 256K بايت حافظه فلش و 4K بايت حافظه استاتيك و قابل برنامه ريزي دارند.

LCD AVR:

اين نوع ميكرو داراي درايور براي نمايشگر LCD با قابليت كنترل اتوماتيك تباين و مقايسه تصوير مي باشد.باعث تمديد عمر باتري مي شود و در حالت فعال داراي توان مصرفي پاييني است.

توان مصرفي پايين:

توان مصرفي پايين آنها براي استفاده بهينه از باتري و همچنين كاربرد ميكرو در وسايل سيار و سفري طراحي شده كه ميكروهاي جديد AVR با توان مصرفي كم از شش روش اضافي در مقدار توان مصرفي ، براي انجام عمليات بهره مي برند.

اين ميكروها تا مقدار 1.8 ولت قابل تغذيه هستند كه اين امر باعث طولاني تر شدن عمر باتري مي شود.

در ميكروهاي با توان پايين ، عمليات شبيه حالت Standby است يعني ميكرو مي تواند تمام اعمال داخلي و جنبي را متوقف كند و كريستال خارجي را به همان وضعيت شش كلاك در هر چرخه رها كند!

ابعاد مختلف ميكروهاي AVR را در اشكال زير مشاهده مي كنيد:

 AVR هاي مدل tiny:

به خود اجازه ندهيد كه نام آن شما را گول بزند... ميكروهاي مدل tiny توانايي هاي عظيمي دارند.به خاطر كوچك بودن و داشتن MCU بسيار پر قدرت به اينگونه ميكروها نياز فراواني هست آنها به هيچ منطق خارجي نياز نداشته و به همراه يك مجتمع مبدل آنالوگ به ديجيتال و يك حافظه قابل برنامه ريزي EEPROM قابليتهاي خود را ثابت مي كنند.

نكات كليدي و سودمند مدل Tiny :

آنها به منظور انجام يك عمليات ساده بهينه سازي شده و در ساخت وسايلي كه به ميكروهاي كوچك احتياج است كاربرد فراوان دارند.

كارايي عظيم آنها براي ارزش و بهاي وسايل موثر است.

 AVR هاي مدل Mega:

اگر شما به ميكرويي احتياج داريد كه داراي سرعت و كارايي بالا باشد و توانايي اجراي حجم زيادي از كد برنامه را داشته و بتواند داده هاي زيادي را سروسامان دهد بايد از AVR هاي مدل Mega استفاده كنيد آنها به ازاي هر يك مگا هرتز سرعت ، توانايي اجراي يك ميليون دستورالعمل در هر يك ثانيه را دارند همچنين قابل برنامه ريزي و بروزرساني كدها با سرعت و امنيت بسيار بالايي هستند.

نكات كليدي و سودمند مدل Mega :

حافظه سريع از نوع فلش با عملكرد خود برنامه ريز و بلوكه ي بوت (Boot Block)

دقت بسيار بالاي 8-كانال در تبديل آنالوگ به ديجيتال 10 بيتي

USART و SPI و TWI بر طبق واسطه هاي سريال

واسطه ي JTAG بر طبق IEEE 1149.1

TWI: Two Wire Interface is a byte oriented interface

USART: Universal Serial Asynchronous Receiver/Transmitter

SPI: Serial Peripheral Interface

JTAG available only on devices with 16KB Flash and up

واسط JTAG فقط در ميكروهاي با بيش از 16 كيلوبايت حافظه فلش موجود است.

AVR هاي مدل LCD:

آنها با بالاترين يكپارچگي و انعطاف پذيري ممكن طراحي شده اند و با داشتن درايور LCD و كنترلر اتوماتيك وضوح تصوير ،بهترين واسطه را با انسان دارند و داراي توان مصرفي پايين و كارايي بالايي هستند.اولين عضو اين خانواده 100 سگمنت داشت و داراي يك UART و SPI به منظور ارتباط به صورت سريال بود.

نكات كليدي وسودمند مدل LCD :

كارايي فوق العاده با سرعت يك ميليون دستورالعمل در ثانيه به ازاي يك مگاهرتز

واسطه ها براي ارتباط با انسان: وقفه هاي صفحه كليد و درايور نمايشگر LCD

آنها اين اجازه را به طراح سيستم مي دهند كه توان مصرفي را در برابر سرعت پردازش تا جايي كه امكان دارد بهينه كند.

نكات كليدي و سودمند حافظه ي فلش خود برنامه ريز:

قابليت دوباره برنامه ريزي كردن بدون احتياج به اجزاي خارجي

128 بايت كوچك كه به صورت فلش سكتور بندي شده اند

داشتن مقدار متغير در سايز بلوكه ي بوت (Boot Block)

خواندن به هنگام نوشتن

بسيار آسان براي استفاده

كاهش يافتن زمان برنامه ريزي

كنترل كردن برنامه ريزي به صورت سخت افزاري

راههاي مختلف براي عمل برنامه ريزي:

موازي يا Parallel :

يكي از سريعترين روشهاي برنامه ريزي

سازگار با برنامه نويس هاي(programmers) اصلي

 خود برنامه ريزي توسط هر اتصال فيزيكي:

برنامه ريزي توسط هر نوع واسطه اي از قبيل TWI و SPI و غيره

دارا بودن امنيت صد درصد در بروزرساني و كدكردن

ISP:

واسطه سه سيمي محلي براي بروزرساني سريع

آسان و موثر در استفاده

 واسطه JTAG :

واسطه اي كه تسليم قانون IEEE 1149.1 است و مي تواند به صورت NVM برنامه ريزي كند يعني هنگام قطع جريان برق داده ها از بين نروند.استفاده از فيوزها و بيتهاي قفل.

بيشتر براي ديباگ كردن آنچيپ و به منظور تست استفاده مي شود

نرم افزار ارائه شده توسط شركتATMEL به نام AVR Studio 4 :

اين نرم افزار به صورت رايگان در سايت شركت ATMEL قرار دارد مي توانيد با رجوع به آدرس http://www.atmel.com آن را دانلود كنيد.

اين نرم افزار در حقيقت يك اسمبلر براي محصولات AVR اتمل است و به صورت كاملا ويژوالي است.

مي تواند با انواع دستگاههاي برنامه نويس ميكرو ارتباط برقرار كند و كدها را در ميكرو دانلود كند.

و قابليت ترجمه كدها به زبانهاي C و Assembly را دارد و ...

منبع: سایت کنترل و ابزار دقیق دانشکده فنی و مهندسی علامه محدث نوری

در يك سيتم متمركز ، همه حسگرها و تحريك كننده ها مستقيما  به سيستم مونيتور مركزي متصل مي شوند. در يك سيستم بزرگ كه تعداد ورودي و خروجي ها به هزاران مي رسد واين تعداد بسيار فراتر ظرفيت سخت افزار كامپيوتر است ، هر دوره اخذ اطلاعات از ورودي ها بيشتر از زمان محدود تعريف شده توسط سيستم طول خواهد كشيد. ساير اشكالات سيستم متمركز عبارتند از : عدم انعطاف پذيري ، عدم استفاده از تكنيك هاي به روز و تكنولوژي هاي جديد وهزينه نصب زياد ومشكلات مربوط به توسعه سيستم . به همين دلائل سعي مي شود كه وظايف در سيستم توزيع شوند . در سيستم توزيع شده تصميم گيريها به صورت محلي صورت مي گيرد و چندين نقطه كنترلي كه وجود دارد كه به طور مستقل از هم عمل مي كنند اما به يكديگر ارتباط دارند . در يك سيستم توزيع شده ، دستگاههاي لايه پائيني هوشمند هستند و كاربر مطابق نياز خودش قادر به برنامه ريزي اين ابزار مي باشد. اين دستگاههاي هوشمند بايد قادر باشند از طريق شبكه با سايرين ارتباط برقرار كنند وبه ابزار ذخيره سازي اطلاعات دسترسي مستقيم داشته باشند.

در سال 1980، شركت Honeywell براي نخستين بار ، امكان سوار كردن سيگنالهاي ديجيتال روي حلقه جريان 4 تا 20 ميلي آمپر را براي برخي از Fild device هاي توليدي خود فراهم كرد. اين سرآغاز ايده ساختن فيلد باس شد. هرFild deviceبراي ارتباطش از قواعد خاص خودش پيروي مي كند كه به سازنده اش بستگي دارد. اداره چنين دستگاههايي روز به روز مشكل تر و پيچيده تر مي شود. به منظور حل اين مسأله ، از شبكه هاي كامپيوتري الهام گرفته شده است. در اين روش يك يا چند خط سريال، همه Fild device را به هم وصل مي كند.(شكل 1)

شكل 2-1- مقايسه باسيستمهاي قديمي

 

 يك فيلد باس از دو جزء اصلي تشكيل مي شود : Fild device ها كه گره خوانده مي شوند وبستري كه شبكه داده اي را تشكيل مي دهد. به كمك فيلد باس مي توان دستگاههاي صنعتي سطح پايين نظير حسگرها ، تحريك كننده ها، ابزار I/O و كنترل كننده ها مثل PLC و كامپيو ترها را به روشي ساده و يكسان به هم متصل نمود . با استفاده از ابزار اندازه گيري سنتي 4 تا 20 ميلي آمپر، فقط ارسال مقادير يك متغير از طريق جفت سيم ميسربود. به كمك تكنولوژي فيلدباس ، تبادل اطلاعات در فرم ديجيتالي و دو طرفه صورت مي گيرد. بنابراين علاوه بر مقادير متغيرها، مي توان اطلاعات ديگري ديگري راجع به وضعيت Fild device بدست آورد وعمل پيكربندي ابزار را نيز از طريق شبكه انجام داد . بدين ترتيب علاوه بر كنترل دستگاهها ، مي توان آنها را اداره كرد. مثلا ً مطلع شد كه يك ترانسميتر حرارتي آخرين بار چه موقع كاليبره شده است.

به كمك اين اطلاعات وبا استفاده از قدرت پردازشي Fild device ، مي توان عمليات كنترلي پيچيده تري را به صورت محلي انجام داد.

فيلد باس علاوه بر امكان انتقال سيگنالها بين ابزار دقيق و اتاق كنترل، امكان انتقال تغذيه مورد نياز تجهيزات را تنها توسط يك جفت سيم ميسر مي سازد. اين موضوع سبب كاهش هزينه هاي كابل كشي ، پانل هاي نگه دارنده كابل ، اتصالات ، كابينتهاي مارشالينگ و مخارج نيروي انساني در رابطه با نصب ، پياده سازي و نگهداري مي شود. همچنين نياز به تعويض پانلها و قطعات ديگر به دليل فرسودگي و خوردگي ، كاهش مي يابد. سيستم انعطاف پذير مي شود و به راحتي مي توان از تكنولوژيهاي جديد استفاده كرد. هر گره را مي توان به منظور سرويس و تعمير از شبكه خارج كرد، بدون اينكه لطمه اي به عملكرد سايرين وارد شود. با استفاده از ابزار واسط مبدل سيگنالهاي فشا(3 to 15 ps ) و جريان ( 4تا 20 ميلي آمپر ) به سيگنالهاي فيلد باس ، امكان مدرنيزه كردن با تكنولوژي فيلد باس وحفظ قطعات سنتي ميسر است. به كمك اين ابزار واسط صرفه جويي هاي قابل ملاحظه اي در مدرنيزه كردن مجموعه حاصل مي شود.(شكل 2 )

شكل 2-2- اتصال تجهيزات سنتي به فيلد باس

 

گفتيم كه براي ساخت فيلد باس از شبكه هاي كامپيوتري محلي ايده گرفته شده است. اما تفاوتهايي هم بين اين دو وجود دارد، از جمله اينكه نرخ انتقال اطلاعات چندان زياد نيست ليكن داده ها بايد در فواصل زماني قابل پيش بيني ارسال شوند.

هم چنين به منظور دستيابي به كارايي بالاتر تمام لايه هاي هفت گانه پروتكل OSI[2] پياده سازي نمي شوند بلكه تنها سه لايه از اين پشته، يعني لايه فيزيكي ، لايه data link ولايه كاربرد پياده سازي مي شوند.

همانند شبكه هاي كامپيوتري ، چون چندين گره از يك بستر ارتباطي استفاده مي كنند، تصادم ايجاد مي شود ودر نتيجه زمان پاسخ افزايش مي يابد. پروتكل هاي مختلفي براي اداره دسترسي به بستر ارتباطي و تصادم تعريف شده كه از ميان آنها روشهاي[3] CSMA/CD وToken passing   براي كاربردهاي صنعتي مناسبترند. علاوه بر تعريف استاندارد بين المللي براي فيلد باس [4]، سازندگان متعددي محصولاتي تهيه كرده اند كه معمولا با يكديگر ساز گار نيستند از جمله :

BACNet, FIP/WEIP, BitBUS, P-NET, ProfiBUS, LonWorks, CANbus

Seriplex, MODBUS, Mester Fieldbus, Interbus, ISP, HART, DeviceNet

 

در سال 1993 استاندارد بين المللي Foundation Fieldbus نتيجه تلاش مشترك ISP و WFIP تعريف شد هدف از تعريف استاندارد براي فيلد باس به شرح زير است :

1-   ابزار آلات تئليد شده توسط سازنده هاي مختلف مانند حالت ند، در عين حال از امكانات شبكه ديجيتال دو طرفه استفاده مي شود.

2-   اين شبكه ها بايد قابل اتصال به سيستمهاي اتوماسيون توليد وپردازش داده تجاري نظير MAP و TOP باشند.

Field device هاي امروزي را مي توان به سه گروه تقسيم كرد:

1-   ورودي – خروجي هاي آنالوگ و ديجيتال

2-   دستگاه هاي تركيبي آنالوگ و ديجيتال

3-   ابزار كاملا ديجيتال

 

دستگاه هاي نوع اول از طريق حلقه هاي جريان آنالوگ 4 تا 20 ميلي آمپر به سيستم ورودي – خروجي متصل مي شوند اين اتصالات كاملا نقطه به نقطه هستند و هر دستگاه جدا گانه، به كنترل كننده هاي ميزبان وصل مي شود. گروه دوم قابل استفاده در سيستم هاي ارتباطي آنالوگ و ديجيتال هستند. به عنوان مثال در اين سيستم ها داده ها يديجيتالي روي سيگنالهاي 4 تا 20 ميلي آمپر آنالوگ سوار مي شوند. سيگنال ديجيتال طوري ساخته مي شود كه ميانگين مقدار آن صفر باشد و خواندن مقادير جريان آنالوگ را تحت تأثير قرار ندهد. دستگاههاي گروه سوم از طريق پورتهاي RS232,RS485 به هم وصل مي شوند ونياز به درايورهاي نرم افزاري دارند. فيلد باس، پروتكل ارتباطي تمام ديجيتال با بازدهي بالاست كه جايگزين هر سه سيستم بالا مي شود. سيستم هاي مبتني بر فيلد باس تنها از محصولات فيلد باس استفاده نمي كنند بلكه تجهيزات قديمي ورودي – خروجي انالوگ قابل اتصال به فيلد باس مي باشند.( شكل 3)

 

 در ادامه به بررسي استانداردFF وپروتكل سه لايه آن واستانداردهاي متداول خاص سازندگان مي پردازيم.

 

شكل 2-3- اتصال سه نوع Field device به فيلد باس

 

2-3-1- آشنايي با برخي از فيلد باسها

 2-3-1-1- تكنولوژي  ‍‍‍‍ (ff) [10],[11] Foundation Field bus

 

خاصيت مهم و سودمند FF ، قابليت همكاري آن است. به اين معنا كه دشتگاههاي مختلف از سازندگان متفاوت قادرند از طريق آن، در يك سيستم كار كنند. سازنده اي كه مي خواهد چنين دستگاهي را توليد كند بايد با استاندارد هاي FF توافق كند و گواهي لازم را دريافت نمايد. اين مسأله كاربر را قادر مي سازد كه به سازنده خاصي محدود نباشد و خود باعث رقابت در ساخت دستگاهها وپايين آمدن قيمتها مي شود.

پشته پروتكل FF شامل سه بخش است:

1- لايه فيزيكي

2- لايه ارتباطات 

3- لايه كاربرد

به منظور مدل كردن اين اجزاء ، از مدل OSI استفاده شده است. لايه فيزيكي همان لايه يك OSI است. و[6]FMS ( لايه تعريف پيغامهاي فيلد باس ) متناظر با لايه هفتم OSI  مي باشد. زير لايه FAS[7] ارتباط بين FMS وDLL[8] را فراهم مي كند ( شكل 1-4 ). هر لايه header مربوط به خودش را به داده هاي كاربر اضافه مي كند تا پيغام به لايه فيزيكي برسد. طول header بر حسب بايت در شكل 1-4 مشخص شده است.

لايه فيزيكي مطابق استانداردهاي ISA و IEC ساخته شده است. لايه فيزيكي پيغام را از پشته پروتكلي در يافت كرده آنرا به سيگنالهاي قابل ارسال روي بستر ارتباطي فيلد باس تبديل مي كند. عمليات تبديل شامل اضافه و حذف كردن مقدمه، محدود كننده ابتدايي و محدود كننده انتهايي مي باشد. سيگنالها به روش Manchester- Biphase-L كد مي شوند . بنابراين اطلاعات زماني لازم براي همگام سازي در خود داده ها پنهان مي باشد. شكل هاي 5و6 نمايشگر نحوه كد كردن اطلاعات و الگوهاي خاص شروع و خاتمه پيغام هستند. گيرنده از سيگنال Preamble براي همگام سازي ساعت خودش با اطلاعات ارسالي استفاده مي كند.

2-4- پشته پروتكلي      Foundation Fieldbus

لايه فيزيكي از دو نوع باس ، پشتيباني مي كند: فيلد باس HI وفيلد باس H2. از فيلد باس HI براي كاربردهاي كنترل دما، سطح و جريان استفاده مي شود. دستگاهها را مي توان مستقيما ً از طريق فيلد باس تغذيه نمود. سيگناليك HI به اين صورت است كه بخش ارسال داده ها، جريان 10mA  با سرعت  25/31 kbit/s توليد مي كند و با توجه به اينكه مقاومت ختم كننده [10]، 50 اهم است ولتاژي برابر يك ولت ( peak to peak)  روي خط مي افتد. اين سيگنال روي جريان DC مستقيم منبع تغذيه سوار مي شود. ولتاژ تغذيه بين 9 تا 32 ولت DC متغير است. طول فيلد باس به سرعت انتقال داده ها، اندازه سيم و توان باس بستگي دارد. مسير اصلي در صورتي كه از كابل زوج سيم تابيده با محافظ استفاده شود، نبايد از 1900  تجاوز كند. فيلد باس H2 براي كنترل پيشرفته فرآيند، ورودي – خروجي هاي راه دور و كاربرد هاي اتوماسيون سرعت بالاي كارخانه بكار مي رود. گر چه استاندارد لايه فيزيكي اجازه مي دهد توان از طريق فيلد باس توزيع شود، اما در بيشتر كاربردها دستگاههاي متصل به H2، منبع تغذيه جداگانه دارند يا از طريق كابل ديگري، توان دريافت مي كنند. مشخصات سيگناليك H2  به اين ترتيب است كه دستگاه ارسال داده، جريان  60mA   با سرعت 2/5 مگابيت در ثانيه توليد مي كند. با توجه مقاومت 75 ختم كننده ها، ولتاژ97 روي خط القاء مي شود. اگر قرار باشد توان از طريق باس ارسال شود،  سيگنالهي فيلد باس روي سيگنال توان 16Khz AC مدوله مي شوند. دستگاه هاي فيلد باس، همگي به مسير اصلي متصل مي شوند وبه كمك اتصال دهنده خاصي از طريق كوپل القايي سيگنالهاي داده و توان را در يافت مي كنند. در اين حالت نيازي به شكستن مسير اصلي باس به منظور اتصال دستگاهها نيست.

به دليل بالا بودن سرعت انتقال داده ها، تنها از توپولوژي باس پشتيباني مي شود و به علت پديده انعكاس ، نمي توان مانند H1 انشعابها را به مسيراصلي متصل نمود. تعداد كل وسايلي كه مي توان به H2 وصل نمود بستگي به مصرف توان ، نوع كابل و استفاده از تكرار كننده ها دارد. به منظور اتصال فيلد باسهاي منفرد H1 وH2 وساخت شبكه بزرگتر از پل ( bridge ) استفاده مي شود. وظيفه لايه LDD كنترل دسترسي به رسانه ارتباطي با استفاده از زمانبند مركزي بنام[11] LAS مي باشد. اين پروتكل از تركيب استانداردهاي ISA و IEC براي لايه DLL بوجود آمده است.

 

دستگاههاي متصل به اين باس را مي توان به سه دسته تقسيم كرد:

1-   دستگاههايي كه قادر نيستند نقش LAS را ايفا كنند.

2-   دستگاههاي Link Master كه مي توانند LAS هم باشند.

3-   پلهايي كه به منظور اتصال فيلد باسهاي منفرد بكار مي روند.

 

LAS

LAS يك ليست حاوي زمانهاي ارسال تمام بافرهاي داده موجود در دستگاههايي كه به صورت پريوديك داده ارسال مي كنند، نگهداري مي كند. هر زمان كه نوبت يك دستگاه فرا ميرسد ، LAS يك پيغام [12]CD به آن مي فرستد. پس از دريافت CD ، دستگاه مزبور داده هاي موجود در بافرش را روي باس منتشر مي كند. دستگاههايي كه به عنوان مشترك دريافت پيغام پيكر بندي شده اند، اين داده ها را دريافت مي كنند. اين روش به منظور ارسال منظم و چرخشي داده ها ي حلقه كنترلي بين دستگاههاي متصل به فيلد باس طراحي شده است.

تمام دستگاههاي روي Fieldbus فرصت اين را دارند كه پيغامهاي خارج از نوبت و پيش بيني نشده را روي باس بفرستند. LAS با ارسال نشانه به يك دستگاه ، به آن اجازه استفاده از باس را مي دهد. وقتي دستگاه نشانه را مي گيرد، تا زماني كه ارسال پيغام شود يا مهلت نگهداري نشانه تمام شود، مي تواند به ارسال پيام ادامه دهد. اين پيغام به يك يا چندين مقصد ارسال مي شود. كل عمليات LAS به پنج گروه تقسيم مي شود:

1-   زمانبندي پيغام CD : همانگونه كه قبلا ذكر شد ، كل عمليات LAS كنترل دستي به باس است. اين وظيفه بالاترين الويت را داراست وساير عمليات در فواصل ارسال زمانبندي شده، انجام مي شوند.

2-   نگهداري ليست اعضاي فعال : اين ليست حاوي آدرس اعضايي است كه به Token دريافتي ، پاسخ مثبت مي دهند. هر لحظه ممكن است دستگاههاي جديدي به باس وصل شود. LAS  به صورت پريوديك پيغامهاي[13]  PN را به آدرسهايي مي فرستد كه در ليستش موجود نيستند. اگر دستگاهي با آدرس مذ كور حاضر باشد، به PN پاسخ مي دهد و نامش به ليست موجود در LAS اضافه مي شود.

لازم است LAS ، پس از ارسال Token به همه اعضاي فعال ، حداقل يك پيغام PN به يك آدرس ارسال كند. دستگاهها تا زماني كه به پيغامهاي[14] PT پاسخ صحيح مي دهند در ليست باقي مي مانند. اگر پس از سه مرتبه تلاش ، دستگاهي بدون استفاده از Token ، آنرا برگرداند، از ليست حذف مي شود. پس از انجام هر نوع تغييري در جدول، محتويات آن را براي همه دستگاههاي موجود روي باس ، منتشر مي شود.

3-   همگام سازي در لايه DLL : LAS بصورت پريوديك پيغام اعلام زمان سراسري را روي شبكه منتشر مي كند تا زمان تمام دستگاهها در لايه DLL، يكسان باقي بماند. اين كار لازم است، زيرا ارتباطات زمان بندي شده بلوك هاي عملياتي در لايه كاربرد ، مبتني بر اطلاعات استخراج شده از اين پيغامها هستند.

4-   ارسال Token : هر دستگاه با دريافت Token ، اجازه دارد پيغامهاي زمانبندي نشده اي را ارسال كند.

5-    افزونگي LAS: هر فيلد باس، ممكن است چندين Link Master داشته باشد كه با از كار افتادن LAS جاري، جايگزين آن بشوند يعني فيلد باس به صورت فعال در زمان رخ دادن خطا [15] طراحي شده است.

لايه FMS به برنامه هاي كاربردي اجازه مي دهد كه به يكديگر از طريق فيلد باس و با استفاده از تعدادي پيغام با فرمت استاندارد، ارتباط داشته باشند. FMS، سرويس هاي ارتباطي ، فرمت پيغام ها و رفتار پروتكل براي ساخت پيغامهاي كاربر را تعريف مي كند.

پيغامهاي FMS را مي توان بر حسب وظايفشان گروه بندي كرد:

1-   پيغام هايي كه مسئول برقراري و قطع ارتباط ورد كردن پيامها هستند.

2-   سرويسهاي دسترسي به متغيرها از قبيل خواندن ، نوشتن، گزارش و پاك كردن اطلاعات.

3-   سرويسهايي كه به برنامه كاربر اجازه مي دهند كه رخدادها را گزارش دهد و آنها را پردازش نمايد.

4-   سرويسهاي down load , uphoad

5-   سرويسهاي اجراي برنامه از راه دور

براي جزئيات بيشتر ، به مرجع ‍‍[10] مراجعه كنيد.

آنالوگ (AO)، كنترل كننده PD و PID وتناسبي تعريف شده اند. در FF-892 ،19 تابع استاندارد ديگر نيز تعريف شده است . به عنوان مثال، يك حس كننده دما، تنها شامل بلوك عملياتي AI است. يك شير كنترل ، شامل بلوك عملياتي PID وبلوك AD مي باشد. بنابراين يك حلقه كنترلي ساده با اين بلوكهاي پايه اي ساخته مي شود.

بلوكهاي Transducer بلوكهاي عملياتي را از توابع ورودي – خروجي محلي مورد نياز براي خواندن حسگرها و صدور دستورات خروجي، جدا مي كند. اين بلوكها حاوي اطلاعاتي در مورد زمان Calibration ونوع حسگرها مي باشند. معمولا به ازاي هر بلوك عملياتي ورودي – خروجي يك بلوك Transducer لازم است. پس از طراحي سيستم وانتخاب ابزار آلات، زمان پيكر بندي سيستم كنترلي به كمك اتصال وروديهاو خروجيهاي بلوكهاي عملياتي به يكديگر طبق استراتژي كنترلي مورد نظر ، فرا مي رسد.( شكل 8) اين كار با استفاده از اشياء گرافيكي موجود در نرم افزار پيكر بندي صورت مي گيرد بدون اينكه نياز به برقراري اتصالات فيزيكي در محل باشد. پس از مشخص شدن اتصالات بلوكهاي عملياتي ، نام دستگاهها، برچسبها ونرخ اجراي حلقه هاي كنترلي، نرم افزار پيكربندي هر دستگاه را توليد مي كنند. پس از اينكه همه دستگاهها، اطلاعات را در يافت كردند، سيستم آماده كار مي شود.

عليرغم تعريف استاندارد براي فيلد باس، اين استاندارد هنوز جهاني نشده وشركتهاي توليد كننده اي وجود دارند كه ادعا مي كنند با رعايت استانداردهاي خودشان به باز دهي بهتري دست مي يابند. محصولات اين شركتها مطابق خصوصيات زير از هم متمايز مي شوند:

1.   مشخصات فيزيكي نظير توپولوژي شبكه ، بستر فيزيكي ارتباط، ماكزيمم تعداد گره هاي متصل به گذرگاه و ماكزيمم طول مسير با تكرار كننده وبدون تكرار كننده.

2.   مشخصات كارايي نظير مدت زمان هر سيكل بازرسي ورودي – خروجي ها، ومدت زمان ارسال هر بلوك داده اي.

3.    مكانيزم انتقال نظير متدهاي ارتباط، خصوصيات ارسال ، سايز داده هاي انتقالي، متد دستيابي به بستر ارتباطي مشترك و روشهاي چك كردن خطا در پيغامها.

 

شكل 2-8- پيكر بندي سيستم از طريق اتصال بلوكها

 

سهولت نصب، پذيرش جهاني و امكان انتقال توان از طريق فيل باس از ديگر مشخصات محصولات مختلف هستند اما به طور قطع نمي توان يكي از اين تكنولوژيها را به عنوان تكنولوژي برتر معرفي كرد و بسته به كاربرد ، بايد نقاط قوت وضعف هر كدام را سنجيد وابزار مناسب را انتخاب نمود. در ادامه به معرفي نمونه هايي از اين دست مي پردازيم.

 

2-3-1-2- AS-i    [24],[25] Actuator sensor-Interface

 كار بردهاي معمول آن در ماشينهاي اسمبلي و بسته بندي ، سيم كشي تك كابلي بلوكهاي حسگر با چند ورودي، حسگرهاي هوشمند، شيرهاي پنوماتيكي، سوئيچ ها و.آشكار كننده ها مي باشد. مزاياي آن، سادگي بسيار زياد ، هزينه پايين و مقبوليت گسترده است. همچنين داراي سرعت بالا مي باشد و مي توان توان مورد نياز Fielddevice را از طريق باس انتقال داد.

 

نقاط ضعف آن عبارتند از: مناسب نبودن براي اتصال به I/O هاي آنالوگ و اندازه محدود شبكه.

ASI براي استفاده در سيستمهاي كوچك با I/O گسسته طراحي شده و تقريبا ساده ترين فيلد باس موجود است. براي پيكر بندي آن تنها لازم است آدرس هر گروه مشخص شود ورودي – خروجي هاي متناسب به آن نسبت داده شوند. كابل سيگنال قادر است توان 30 ولت DC را با جريان كم ، براي تغذيه وروديها ، حمل كند وتوان مورد نياز خروجي ها از طريق كابل جداگانه اي حمل مي شود.

با وجود عدم استفاده از پوشش محافظ در مقابل اغتشاشات RFI,EMI مصون است ، به اين دليل كه سيگنالهاي ديجيتال روي ك مصون است ، به اين دليل كه سيگنالهاي ديجيتال روي ك مصون است ، به اين دليل كه سيگنالهاي ديجيتال روي كابل بصورت سيگنال سينوسي كد مي شوند كه پهناي باند خيلي باريكي دارد. مكانيزم فيلترينگ در طول شبكه توزيع شده وسيگنالهاي اغتشاش را پس مي زند. سيگنالهاي آنالوگ نيز مي توانند روي خط، ارسال شوند، اما هر گره تنها مي تواند يك دستگاه آنالوگ را پشتيباني كند.

زمان SCAN در ASI قطعي است. يعني با اطمينان مشخص كرد كه فاصله زماني بين تغيير وضعيت تا گزارش آن چقدر است. براي محاسبه زمان SCAN بايد تعداد گره ها شامل Slave,Master را در 150 ميكرو ثانيه ضرب كرد.

 

2-3-1-3- [31] Interbus

كاربردهاي متداول آن در ماشينهاي اسمبلي، جوشكاري و كنترل مواد مي باشد. همچنين براي سيم بندي تك كابلي حسگر چند ورودي، شيرهاي پنوماتيكي ، بار كد خوانها، درايوها و واسط هاي كاربر استفاده مي شود. از مزاياي آن آدرس دهي اتوماتيك بهگره هاست كه شروع به كار سيستم را آسان و سريع مي كند. توانايي تشخيص خطاي آن بسيار پيشرفته است. پيغام هاي آن Overhead كمي دارند و زمان پاسخ سريع و استفاده مؤثر از پهناي باند و انتقال توان از خصوصيات ديگر آن است.

اشكال آن اين است كه از كار افتادن يك اتصال، كل شبكه را از كار مي اندازد و توانايي انتقال مقادير خيلي زياد داده را ندارد.

 اين باس از نظر فيزيكي شبيه يك شبكه مبتني بر Line-and-drop به نظر مي رسد اما در واقع يك رينگ سريال است و هر Slave، دو اتصال دارد و از طريق يكي داده را رد مي كند و از طريق ديگري داده ها را به بعدي منتقل مي كند. اطلاعات آدرس دهي در اين پروتكل وجود ندارد و داده ها به روش چرخشي روي شبكه قرار مي گيرند وMaster با توجه به مكان هر گره در حلقه مي تواند تشخيص دهد گره در حال خواندن يا نوشتن است. اين مسأله سربار بسته هاي داده اي را مي نيمم مي كند. بنابراين تعداد كمي از باسهاي موجود سريعتر از InterBUS هستند.

 

InterBUS مي تواند به آساني I/O هاي آنالوگ و ديجيتال را اداره كند و داده ها مي توانند بصورت بلوكي ارسال شوند. به كمك ماجولهايي به نام COMM كه بوردهايي به اندازه كارت اعتباري هستند ونصب آنها در كنترل كننده ها، واسط كاربر، درايو، بار كد خوان، پردازنده سيگنال و هر دستگاه ديگري ، مي توان آنها را به فيلد باس متصل كرد.

 

2-3-1-4- [21],[22] CAN Open

كاربردهاي متداول آن در سيستمهاي كنترل حركت، ماشين هاي اسمبلي ، جوشكاري و كنترل مواد، اتصال بلوكهاي حسگر ، حسگرهاي هوشمند، شيرهاي پنوماتيك ، بار كد خوان ، واسط كاربر ودرايو مي باشد.

 

 CAN Open در واقع پروتكل لايه كاربرد است و بر مبناي پروتكل CAN  كه لايه هاي 1و2 را تعريف مي كند نوشته شده است و مزاياي آن عبارتند از:

1-   از ساير شبكه هاي مبتني بر پروتكل CAN  براي كنترل حركت سرعت بالا و حلقه هاي فيلد بك مناسبتر است. 



[1]  On-line

[2] Open System Interface

[3] Carrier Sense Multiple Access/Collision Detection

[4] Foundation Fieldbus Standard

[5] interoperabilily

[6] Fieldbus Message Specification

[7] Fieldbus Accsess Sublayer

[8] Data Link Layer

[9] Terminator

[10] Terminator

[11] Link Access Sublayer

[12] Compel Data

[13] Probe Node

[14] Passing Token

[15] Fail operational

 منبع:سایت کنترل و ابزار دقیق دانشکده فنی و مهندسی علامه محدث نوری

سرو موتور AC  

سروموتورهاي AC همانطـور که قبلا ذکر شد انتخاب مناسبي براي کاربـــردهاي با توان پايين هستند و به همين دليل است که موتورهاي AC هميشه به  موتورهاي DC ترجيح داده ميشوند. مزاياي  سروموتورهاي  AC به سروموتورهاي DC شامل موارد زير است :

 1- روتورهاي قفس سنجابي ساده هستند و در مقايسه با سيم پيچي آرميچر ماشينهاي DC از نظر ساختاري ،  محکمتر هستند.

2- سروموتورهاي AC داراي جاروبک براي کموتاسيـون نيستنـد و نياز به تعمير ونگهداري دائم ندارند.

3- هيچ عايقي در اطراف هادي آرميچر آنچنان که در موتور DC وجود دارد نيست پـس آرميـچر مي تواند بسيار بهتر گرما را پخش کند. 

4- بدليل اينکه آرميـچر،  سيـم پيچي هاي عايـق دار پيچـيده اي ندارد ،  قطر آن مي توانـد براي کاهش اينرسي روتور بسيار کاهش يابد . اين امر به جلوگيري از  Over Shoot  در مکـانيسم سـرو کمک مي کند .

سروموتورهاي AC همانطـور که قبلا ذکر شد انتخاب مناسبي براي کاربـــردهاي با توان پايين هستند و به همين دليل است که موتورهاي AC هميشه به  موتورهاي DC ترجيح داده ميشوند. مزاياي  سروموتورهاي  AC به سروموتورهايDC شامل موارد زير است :

 1- روتورهاي قفس سنجابي ساده هستند و در مقايسه با سيم پيچي آرميچر ماشينهاي DC از نظر ساختاري ،  محکمتر هستند.

2- سروموتورهاي AC داراي جاروبک براي کموتاسيـون نيستنـد و نياز به تعمير ونگهداري دائم ندارند.

3- هيچ عايقي در اطراف هادي آرميچر آنچنان که در موتور DC وجود دارد نيست پـس آرميـچر مي تواند بسيار بهتر گرما را پخش کند.

 

4- بدليل اينکه آرميـچر،  سيـم پيچي هاي عايـق دار پيچـيده اي ندارد ،  قطر آن مي توانـد براي کاهش اينرسي روتور بسيار کاهش يابد . اين امر به جلوگيري از  Over Shoot  در مکـانيسم سـرو کمک مي کند .

يک سروموتور AC  اصولا يک موتور دوفاز القايي است به جز در مورد جنبه‌هاي خـاص طراحي آن.

 

توان مکانيکي خروجي يک سروموتور DC از 2 وات تا چند صد وات تغيير مي کند . مــوتورهاي بزرگتر از اين توان بسيار کم بازده اند واگربامشـخصات گشتـاور سرعت مطلوب ساخته شده باشند براي استفاده در کاربردهاي سرو بسيار مشکل ساز خواهند شد . سرو موتورهاي دقيق در کامپيوترها ابزارهاي سرو و شماري ازکاربردها که به دقت بالايي نياز است بکار مي روند.

منبع:سایت کنترل و ابزار دقیق دانشکده فنی و مهندسی علامه محدث نوری

نمایش نمرات بچه های کنترل دانشگاه علامه محدث نوری

بانكهاي خازني

مي دانيم در شبكه هاي جريان متناوب توان ظاهري كه از مولدها دريافت مي شود به دو بخش توان مفيد و غير مفيد تقسيم مي شود . نحوه اين تقسيم به شرايط مدار بستگي دارد به اين معني كه هر قدر ضريب توان (CosΦ) به يك نزديكتر باشد سهم توان مفيد بيشتر است . اين اتفاق در مدارتي رخ مي دهد كه مصارف اهمي آن بيشتر است .مانند سيستمهاي روشنايي يا توليد گرما توسط انرژي برق . اما مي دانيم كه سهم عمده مصارف شبكه ها را مصرف كننده هاي (اهمي – سلفي ) دريافت مي كنند . مانند الكتروموتورها – ترانسفورماتورهاي توزيع – چوكها و .... كه درآنها سيم پيچ يا سلف نقش اصلي را ايفا مي كند . در سيمپيچها به علت خاصيت ذخيره سازي انرژي الكتريكي بصورت ميدان مغناطيسي توان همواره بين شبكه و سلف رد و بدل مي شود . سلف در يك چهارم زمان تناوب توان دريافت مي كند و در يك چهارم بعدي زمان ، توان را به شبكه پس مي دهد .

درست است كه نتيجه رياضي اين عمل يعني عدم مصرف انرژي زيرا توان داده شده به سلف با توان دريافت شده از ان برابر است اما در عمل اين اتفاق رخ نمي دهد زيرا توان پس داده شده به شبكه امكان استفاده را براي مولد ايجاد نمي كند و اين توان در هر حالتي از مولد دريافت شده است . و براي رسيدن به مصرف كننده اهمي – سلفي از شبكه توزيع شامل : سيمها – كابلها و ... عبور كرده است .

نتيجه اينكه سلف تواني را از مولد دريافت مي كند اما اين توان را به شبكه پس مي دهد . اين توان قابل استفاده نيست و در مسير عبور تلف مي شود . پس مقدار از توان تلف مي شود . مصرف كننده هاي فوق براي انجام اينكار به توان مذكور نياز دارند اما اين توان براي شبكه مضر است و زيانهاي زير را در پي دارد :

- اضافه شدن جريان مولد و درنتيجه نياز به مولدهايي با توانهاي بيشتر
- چون جريان شبكه زياد مي شود به سيمها و كابلهايي با سطح مقطع بالاتر براي كاهش افت ولتاژ نياز است كه اين موضوع هزينه اوليه شبكه را افزايش مي دهد .
- اتلاف توان در شبكه هاي توزيع بصورت حرارت روي مي دهد در نتيجه هر كاري كنيد نمي توانيد از اين اتلاف جلوگيري كنيد . نتيجه اين اتلاف توان ،كاهش ولتاژ مصرف كننده مي باشد كه اين موضع راندمان مصرف كننده را پايين مي آورد .
- نمي توان اين توان را به مصرف كننده هاي اهمي سلفي تحويل نداد زيرا كار آنها مختل مي شود .

خازن ناجي شبكه هاي توليد و توزيع

توان هم در خازنها بصورت توان غير مفيد است درست مانند سلفها در يك چهارم پريود موج متناوب ،توان دريافت مي كنند و در يك چهارم بعدي توان را تحويل مي دهند پس خازنها هم مانند سلفها باعث افرايش توان راكيتو ( غير مفيد ) شبكه مي شوند اما اتفاق بامزه زماني روي مي دهد كه خازن و سلف با هم در شبكه قرار گيرند .
اين دو برعكس هم عمل مي كنند . يعني زماني كه سلف توان مي گيرد خازن توان مي دهد و زماني كه سلف توان مي دهد خازن توان مي گيرد . پس توانهاي غير مفيد اين دو فقط يكبار از شبكه دريافت مي شود و در زمانهاي بعد بين آنها تبادل مي شود بدون اينكه مولد اين توان را تحمل كند . پس مصرف كننده هاي اهمي سلفي توان راكتيو خود را دريافت مي كنند و مولد و شبكه توزيع آنرا توليد و پخش نمي كنند زيرا اين كار را خازن انجام مي دهد . اين خازنها از حالا به بعد ، خازنهاي اصلاح ضريب توان نام مي گيرند و وظيفه آنها تامين توان راكتيو مورد نياز مصرف كننده هاي اهمي سلفي است .

اتصال خازن به شبكه

خازنهاي اصلاح ضريب توان بايد در شبكه بصورت موازي قرار گيرند . براي اينكار در شبكه هاي تكفاز بايد به فاز و نول وصل شوند و در شبكه هاي سه فاز پس از اتصال بصورت ستاره يا مثلث آنگاه به سه فاز متصل مي شوند . مانند نقشه زير :
http://f7.yahoofs.com/users/4456488ezb5f4a273/2410scd/__sr_/b751scd.jpg?

phA2qgFBUSfLnIJQ


http://f7.yahoofs.com/users/4456488ezb5f4a273/2410scd/__sr_/4c16scd.jpg?

phA2qgFBsRpE589O

اين خازنها بايد از انواعي انتخاب شوند كه بتوانند دايمي در مدار قرار گيرند پس بايد بتوانند ولتاژ شبكه را تحمل كنند در محاسبه خازن از انواعي استفاده مي شود كه ولتاژ مجاز آنها 15% بيشتر از ولتاژ شبكه باشد .

محاسبه خازن

نقش خازن در شبكه كاهش توان راكتيو مصرف كنند هاي اهمي – سلفي از ديد مولدها است . با اين اتفاق ضريب توان مفيد به يك نزديك مي شود . پس با كنترل ضريب توان امكان كنترل توان راكتيو وجود دارد . اين كار بكمك يك كسينوس في متر صورت مي گيرد . يعني بكمك كسينوس في متر مي توان دريافت كه ضريب توان و در نتيجه توان راكتيو در چه وضعيتي قرار دارد .

دامنه تغييرات ضريب توان (CosΦ) :
نمودار زير دامنه تغييرات ضريب توان را نشان مي دهد .

http://f7.yahoofs.com/users/4456488ezb5f4a273/2410scd/__sr_/9331scd.jpg?

phA2qgFBx_CvxMEa

خازن مذكور بايد برابر نياز شبكه باشد در غير اينصورت خود توان راكتيو از مولد دريافت مي كند و همچنين سبب افزايش ولتاژ آن مي شود . پس بايد خازن مطابق نياز شبكه محاسبه شود .


پرسش : شبكه به چه مقدار خازن نياز دارد ؟
پاسخ : مقداري كه ضريب توان را به يك نزديك كند . اين مقدار خازن خود توان راكتيوي ايجاد مي كند كه توان راكتيو مصرف كننده اهمي – سلفي را جبران مي كند . پس مقدار خازن به مقدار توان راكتيو مدار بستگي دارد . هر قدر اين توان قبل از خازن گذاري بيشتر باشد ، اندازه خازن نيز بزرگتر خواهد بود .

با توجه به مطالب گفته شده بايد براي محاسبه خازن دو مقدار مشخص شود :

يك – مقدار ضريب توان شبكه قبل از خازن گذاري
دو – مقدار ضريب توان شبكه بعد از خازن گذاري كه انتظار داريم شبكه به آن برسد
سه - اندازه توان اكتيو

پس از تعيين اين مقاديرمراحل زير را پي مي گيريم . براي مقدار ضريب توان مطلوب مثلا عدد 9/0 مقدار خوبي است . حال دو مقدار ضريب توان داريم يكي ضريب توان شبكه قبل از خازن گذاري و ديگري ضريب توان مطلوب كه مي خواهيم با گذاردن خازن به آن برسيم . بكمك رابطه زير مقدار توان راكتيو مورد نظر را كه با آمدن خازن تامين مي شود محاسبه مي كنيم . ( توجه : در خريد خازنهاي اصلاح ضريب توان بجاي فارد براي تعيين ظرفيت خازن از ميزان توان راكتيو آن خازن سخن گفته مي شود.)


محاسبه خازن در اين مرحله تمام مي شود و مقدار توان بدست آمده همان مقدار خازن موردنياز است .

Q = P . F

منبع:سایت کنترل و ابزار دقیق دانشکده فنی و مهندسی علامه محدث نوری

http://amnuc.com/index.php?option=com_content&task=view&id=89&Itemid=1

 

 

 

مدیریت وبلاگ

سلام

فصل امتحانات نزدیکه و ما هم مشغول درس خوندن.از دوستهای خوب وعزیزم مهندسان مجید ایمانی و بهرام مسیب زاده و محمد ظهیرالملک و حامدسلیمانی تازه کن کمال تشکر رو دارم وامیدوارم درتمام مراحل زندگی موفق باشند.

 

امواج صوتی والکترومغناطسی

اشعه ایکس یا پرتو ایکس (اشعه رونتگن) نوعی از امواج الکترومغناطیس با طول موج حدود ۱۰ تا ۱۰-۲ آنگستروم است که در بلورشناسی و عکسبرداری از اعضای داخلی بدن و عکسبرداری از درون اشیای جامد و به عنوان یکی از روش‌های تست غیرمخرب در تشخیص نقص‌های موجود در اشیای ساخته شده (مثلاً در لوله‌هاو...) کاربرد دارد.
تاریخچه
اشعهٔ ایکس در سال ۱۸۹۵ توسط و.ک.روتنگن (رنتگن)، فیزیکدان آلمانی کشف شد و به دلیل ناشناخته بودن ماهیت آن، اشعهٔ ایکس نامیده شد. او پی برد که برخورد پرتوهای کاتدی بر جداره‌های لامپ خلاء، پرتوهایی نامرئی با قدرت نفوذ بسیار زیاد تولید می‌کند که بر روی فیلم‌های عکاسی تأثیر می‌گذارند. این پرتوها توانایی عبور از لایه‌های ضخیم مواد کدر، از جمله بافت‌های بدن انسان را داشتند.
این گمان که پرتوهای ایکس، امواج الکترومغناطیس با طول موج بسیار کوتاهند، به کمک یک آزمایش پراش دوگانه که در سال ۱۹۰۶ توسط سی.گ.بارکلا انجام گرفت، تائید شد.
اثبات قطعی ماهیت موجی پرتو ایکس در سال ۱۹۱۲ به وسیله‌ی فون لاوه ارائه شد.
انواع پرتو ایکس
• پرتو ایکس تکفام (تک رنگ): پرتو ایکسی که فقط دارای یک طول موج خاص است را پرتو ایکس تکفام می‌نامند.
• پرتو ایکس سفید (پیوسته): پرتو ایکسی که تکفام نبوده و دارای طول موج‌هایی در بازهٔ λ1 تا λ2 است.
روش‌های تولید
در هنگام برخورد الکترونهای با سرعت بالا به فلزات، الکترون‌های لایه‌های پایین‌تر به لایه‌های بالاتر منتقل شده (اتم‌ها برانگیخته می‌شوند) و در هنگام برگشت الکترون‌ها به حالت پایه انرژی مازاد را به صورت پرتو ایکس گسیل می‌کنند. بنابراین هر لامپ تولید اشعه ایکس باید شامل:
• منبع الکترون
• میدان شتاب‌دهنده به الکترونها
• هدف فلزی
باشد. بعلاوه از آنجایی که قسمت عمده‌ی انرژی جنبشی الکترونها هنگام برخورد به فلز هدف، به حرارت تبدیل می‌شود، معمولاً فلز هدف را با آب خنک می‌کنند تا ذوب نشود.
ایمنی
پرتو ایکس برای انسان بسیار خطرناک است و می‌تواند آسیب‌های زیستی قابل توجهی را پدید آورد. این آسیب‌ها در انسان شامل سوختگی، بیماری ناشی از دریافت تابش بیش از حد و اثرات ژنتیکی می‌باشند.
گستره اشعه فرابنفش
اشعه فرابنفش بین طول موجهای 0.0144 میکرومتر و 0.39 میکرومتر است. اشعه فرابنفش را به سه منطقه تقسیم می‌کنند:
• ماورا بنفش با طول موج بلند یا ماورا بنفش A : این اشعه بین طول موجهای 0.39 و 0.315 میکرومتر قرار دارد. نسبت این اشعه در نور آفتاب ، قوس الکتریکی زغال و چراغهای الکتریکی معمولی زیاد است.
• ماورا بنفش با طول موج متوسط یا ماورا بنفش B : این اشعه بین طول موجهای 0.315 و 0.28 میکرومتر است. این اشعه در نور چراغ بخار جیوه و قوسهای الکتریکی با الکترودهای فلزی وجود دارد، تاثیر آنها در پوست شدید است.
• ماورا بنفش با طول موج کوتاه یا ماورا بنفش C : این اشعه شامل طول موجهای کوتاهتر از 0.28 میکرومتر است و فقط در قوس الکتریکی جیوه وجود دارد.
جذب اشعه فرابنفش
• از شیشه معمولی فقط اشعه فرابنفش A عبور می‌کند. در صنعت شیشه‌هایی با ترکیبات مخصوص می‌سازند که طول موج 0.26 یعنی ماورا بنفش B و A و قسمتی از C را نیز عبور دهد.
• شفافیت کوارتز خیلی بیشتر از شیشه است و فقط طول موجهای کوتاهتر از 0.18 میکرومتر در آن جذب می‌شود. به همین سبب حبابهای چراغهای مولد اشعه فرابنفش را از کوارتز تهیه می‌کنند.
• آب خالص برای اشعه فرابنفش ، شفاف‌ترین مایعات است و طبقات نازک آن امواج بلندتر از 0.2 میکرومتر را از خود عبور می‌دهند.
• گازها معمولا برای اشعه فرابنفش ، شفاف هستند و طول موجهای بلندتر از 0.18 میکرومتر از لایه‌های نازک هوا بخوبی عبور می‌کنند.
منابع اشعه فرابنفش
منابع اشعه فرابنفش خیلی زیاد است. تعدادی از آنها عبارتند از:
قوس الکتریکی زغال
نسبت اشعه فرابنفش در قوس الکتریکی زغال نسبتا کم است، ولی اگر اکسیدهای فلزی به الکترودهای زغالی اضافه کنند، مقدار این اشعه افزایش می‌یابد. برای این کار الکترودهایی می‌سازند که در آنها یک غلاف زغالی دور اکسید فلزی را گرفته است. قوسهایی که الکترود آنها از فلز خالص ساخته شده باشند، نیز به نسبت زیاد اشعه فرابنفش دارند.
چراغهای بخار جیوه
مهمترین و متداولترین منابع اشعه فرابنفش چراغهای بخار جیوه هستند که با مصرف کم نیروی الکتریکی ، مقدار زیادی اشعه فرابنفش تولید می‌کنند. قسمت اساسی لامپ از لوله‌ای از جنس کوارتز ساخته شده است که در دو طرف آن دارای دو مخزن جیوه است.
اندازه گیری اشعه فرابنفش
اساس اندازه گیری اشعه فرابنفش متکی به خواص فیزیکی و شیمیایی آن است. وسایلی که برای اندازه گیری اشعه فرابنفش وجود دارد، اکتی نومتر (Actinometer) نامیده می‌شود و به سه دسته تقسیم می‌شود:
• پیل ترموالکتریک : جسمی را که کلیه اشعه را جذب می‌کند، در معرض تابش اشعه قرار داده و حرارت حاصله را اندازه گیری می‌کنند.
• اکتی نومتر فیزیکی : مهمترن این نوع اکتی نومترها سلول فوتوالکتریک (Photoelectric) است که از یک حباب از جنس کوارتز که به خوبی تخلیه شده است، تشکیل شده و نیز شامل دو الکترود است.
• اکتی نومتر شیمیایی : املاح نقره در اثر تابش اشعه فرابنفش احیا شده و چون نقره آن آزاد می‌گردد، املاح سیاه رنگ می‌شود. اکتی نومتری که متکی به خاصیت فوق است، اکتی نومتر بوردیه (Bordier) است.
خواص فیزیکی و شیمیایی اشعه فرابنفش
خواص فیزیکی اشعه فرابنفش
خاصیت فوتوالکتریک
اگر اشعه فرابنفش به فلزات بتابد، از آنها الکترون جدا می‌کند، ولی جدا شدن الکترون در کلیه فلزات به یک اندازه نیست و حساسیت کادمیوم بیش از همه می‌باشد. مقدار الکترونی که از فلز جدا می‌شود، متناسب با مقدار انرژی اشعه‌ای است که به آن می‌تابد
خواص شیمیایی اشعه فرابنفش
خاصیت فلوئورسانس
یکی از خواص مهم و جالب اشعه فرابنفش خاصیت فلوئورسانس آن می‌باشد. اگر در مقابل اشعه فرابنفش و یا یک چراغ بخار جیوه ، اجسامی از قبیل گچ و کولوفان (Colophan) و محلول سالسیلات دو سود یا آنتی پیرین و یا بعضی از سنگهای معدنی را قرار دهند، ملاحظه می‌شود که هر یک به نسبت جذب اشعه به رنگهای مختلف درخشندگی پیدا می‌کند. این خاصیت نیز بستگی به طول موج و شدت جذب اشعه دارد. بعضی اجسام در مقابل اشعه فرابنفش با موج بلند این خاصیت را ندارند و به عکس در مقابل اشعه فرابنفش با موج کوتاه خاصیت فلوئورسانس پیدا می‌کند.
خاصیت فوتو شیمیایی
اشعه فرابنفش باعث تعداد زیادی فعل و انفعالات شیمیایی می‌شود و این خاصیت در اشعه با موج کوتاه 0.3 میکرومتر شدیدتر است. از جمله مانند نور مرئی که املاح نقره را تجزیه و فلز آنها را آزاد می‌سازد و این خاصیت در اشعه با موج کوتاه بیشتر است. مدتها برای اندازه گیری مقدار اشعه فرابنفش از این خاصیت استفاده می‌کردند.
کاربرد اشعه فرابنفش
1. برای ضد عفونی کردن آبها
2. تحریک پذیری شدید روی اعضای حسی سطحی
3. تخریب نسوج
4. تخریب باکتریها
اصول توموگرافی
توموگرافی
- سیستمهای توموگرافی حرکتی:
اطلاعات مربوط به عمق را در بر دارد و در همه سطوح به جز سطح مورد نظر ، عدم وضوح یا رنگ باختگی حرکت عمومی ایجاد می کند.
در این روش لوله اشعه ایکس و فیلم را حول محوری واقع در صفحه مورد نظر از بدن حرکت میدهند. و اسکن به صورت خطی یا پیچشی یا دایره ای صورت می گیرد.
قدرت این روش برای جداکردن یک روش خاص محدود است چون فقط می تواند صفحات غیر دلخواه را کم رنگ کند. کیفیت وضوح تصویر با رادیوگرافی معمولی فرقی ندارد.
توموگرافی محوری کامپیوتری این مزیت را دارد که قادر به تولید تصویر ایزوله از یک قسمت و حذف کامل قسمتهای دیگر است.
- اسکنرهای توموگرافی محوری کامپیوتری(CAT)
- محاسن:
1. به دلیل تولید تصاویر مقطعی مستقل عوامل تداخلی سطح دلخواه را کاهش نمیدهند.
2. فقط قسمت مورد نظر پرتودهی می شود ، در نتیجه دوز اشعه ایکس کم است.
3. اختلافات تضعیف بافتی کمتر از یک درصد را می توان مشاهده کرد.
1.1.2. CT اسکن
مقطع نگاری کامپیوتری:
اسکنر آن انقلابی در عرصه پزشکی بوجود اورده است زیرا این اسکنر تصویررا به طور معمول ثبت نمیکند .در این اسکنر هیچ گیرنده تصویر عمومی مثل فیلم یا تیوب تقویت کننده تصویر وجود ندارد در این جا بیمار مستقیما در عرض باریکه پرتو X قرار میگرد. پرتو تشکیل دهنده تصویر تضعیف شده بوسیله آشکار ساز اندازه گیری میگردد.حاصل این اندازه گیر به یک کامپیوتر فرستاده می شود،سپس کامپیوتر سیگنال رسیده از اشکار ساز را تحلیل کرده وتصویر را بازسازی می کندو تصویر نهایی را بر روی یک نمایشگر نشان می دهد.این تصویر را می توان برای ارزیابی های بعدی به صورت عکس درآورد. بازسازی تصویری که از برش عرضی آناتومی بدن بدست آمده با استفاده از الگوریتم صورت میگیرد کیفیت تصویری که از اسکنرهای آن بدست می آیدو بسیار بیشتر از رادیوگرافی معمولی است
اصول عملکرد:
هنگامی که با تکنینک رادیوگرافی معمولی محدوده شکم به تصویر کشیده می شود تصویر به طور مستقیم بر روی گیرنده تصویر به وجود می آید که این تصویر دارای کنتراست نستبا کمی است .
تصویر به اندازه مورد نظر واضح نیست زیرا همه ساختارهای آناتومی داخل شکم بر روی هم افتاده اند. برای مشاهده بهتر یک ساختار شکم مثل کلیه ها مقطع نگاری معمولی (conventional tomography) را میتوان مورد استفاه قرار داد در مقطع نگاری معمولی به علت اینکه ساختارهایی که بالا و پایین ساختار مورد نظر قرار دارند محو می شوند ساختار مورد نظر دارای کنتراست بیشتری خواهد بود و ضمنا تصاویر کمتر دچار تیرگی و محو شدگی خواهد بود
مقطع نگاری معمولی مقطع نگاری محوری (axial tomography) است زیرا صفحه تصویر موازی با محور طولی بدن است که نتیجه این امر تصاویر coronalو, sagittal است .در scan آن تصویر بصورت عرضی یا مقطعی است و تصویر عمود بر محور طولی بدن است.

منبع پرتو ایکس و آشکار ساز به گونه ای به یکدیگر متصل می شوند که همزمان با هم حرکت کنند.هنگامی که منبع اشکار سازی جاروب روی مقطع عرضی بیمار را انجام میدهد ساختارهای داخلی بدن بنابر چگالی جرمی وعدد موثرشان باریکه پرتو X راتضعیف می کنند. شدت پرتو گرفته شده توسط آشکار ساز مطابق با الگوی تضعیف یک intensity profile را تشکیل می دهد با تکرار حرکت انتقالی منبع آشکار ساز تعداد بیشتری protection بدست می آید. سپس این داده ها ی بدست آمده برای پردازش و بازسازی تصویر به کامپیوتری فرستاده می شود
پرتو گاما گونه‌ای تشعشع الکترومغناطیسی است که در فرآیند تباهی هسته‌ای یا در برهمکنش‌های زیر اتمی پدید می‌آید.
با توجه به اینکه اشعه گاما نوعی تشعشع الکترومغناطیسی است، فاقد بار و جرم سکون است. اشعه گاما موجب برهمکنشهای کولنی نمی‌گردد و لذا برخلاف ذرات باردار بطور پیوسته انرژی از دست نمی‌دهند. معمولاً اشعه گاما تنها یک یا چند برهمکنش اتفاقی با الکترونها یا هسته‌های اتم‌های ماده جذب کننده احساس می‌کند. در این برهمکنش‌ها اشعه گاما یا بطور کامل ناپدید می‌‌گردد یا انرژی آن بطور قابل ملاحظه‌ای تغییر می‌یابد. اشعه گاما دارای بردهای مجزا نیست، به جای آن، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش می‌یابد.
[ویرایش] فروپاشی گاما
در فروپاشی گاما، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایین‌تر یا حالت پایه آن می‌رود، تشعشع الکترومغناطیسی منتشر می‌گردد. معادله عمومی فروپاشی گاما بصورت زیر است:
AZX*-------->AZX + γ
که در آنX و X* به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است. قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی (A) و عدد اتمی (Z) همراه نیست.
حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما، فقط زمانی به عنوان ایزومر هسته‌ای در نظر گرفته می‌شود که نیمه عمر حالت برانگیخته به اندازه‌ای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود. زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف می‌گردد. اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونه‌ها در حالات انرژی بالاتر از حالت پایه نیز به کار می‌رود.
حالتهای فروپاشی گاما نشر اشعه گامای خالص : در این حالت فروپاشی گاما، اشعه گامای منتشر شده به‌وسیله یک هسته از یک فرآیند فروپاشی گاما برای کلیه گذارها بین ترازهای انرژی که محدوده انرژی آن معمولاً از 2 کیلو الکترون ولت تا 7 میلیون الکترون ولت است، تک انرژی است. این انرژیهای گذارها بین حالت کوانتومی هسته بسیار نزدیک هستند. مقدار کمی از انرژی پس زنی هسته با هسته دختر (هسته نهایی) همراه است، ولی این انرژی معمولاً نسبت به انرژی اشعه گاما بسیار کوچک بوده و می‌توان از آن صرفنظر کرد.
حالت فروپاشی بصورت تبدیل داخلی : در این حالت فروپاشی، هسته برانگیخته با انتقال انرژی خود به یک الکترون اربیتال برانگیخته می‌گردد، که سپس آن الکترون از اتم دفع می‌شود. اشعه گاما منتشر نمی‌شود. بلکه محصولات این فروپاشی هسته در حالت انرژی پایین یا پایه، الکترونهای اوژه، اشعه ایکس و الکترونهای تبدیل داخلی است. الکترونهای تبدیل داخلی تک انرژی هستند. انرژی آنها معادل انرژی گذار ترازهای هسته‌ای درگیر منهای انرژی پیوندی الکترون اتمی است.
با توجه به اینکه فروپاشی تبدیل داخلی منجر به ایجاد یک محل خالی در اربیتال اتمی می‌شود، در نتیجه فرآیندهای نشر اشعه ایکس و نشر الکترون اوژه نیز رخ خواهد داد.
حالت فروپاشی بصورت جفت : برای گذارهای هسته‌ای با انرژی‌های بزرگ‌تر از 1.02 میلیون الکترون ولت تولید جفت اگر چه غیر معمول است اما یک حالت فروپاشی محسوب می‌شود. در این فرآیند، انرژی گذرا ابتدا برای بوجود آمدن یک جفت الکترون – پوزیترون و سپس برای دفع آنها از هسته بکار می‌رود.
انرژی جنبشی کل داده شده به جفت معادل اختلاف بین انرژی گذار و 1.02 میلیون الکترون ولت مورد نیاز برای تولید جفت است. پوزیترون تولید شده در این فرآیند نابود خواهد شد.
تاريخچه پرتوپزشکی:
يكي از روشهاي تشخيصي و درماني ارزشمند در طب، پزشكي هسته اي مي باشد. كه تبلور آن از ابتدا تا كنون تلفيقي از كشفيات مهم تاريخي بوده است. اولين جرقه در سال 1895 با كشف اشعه X و در 1934 با كشف مواد راديواكتيو زده شد. اولين استفاده كلينيكي مواد راديواكتيو، در سال 1937 جهت درمان لوسمي در دانشگاه كاليفرنيا در بركلي بود. بعــــــد از آن در 1946 با استــــــفاده از اين مواد توانستند در يك بيمار مبتلا به سرطان تيروئـــــيد از پيشرفت اين بيماري جلوگيري كنند.
البته تا 1950 كاربرد كلينيكي مواد راديواكتيو بطور شايع رواج نيافت و مسكوت ماند. طي سالهاي بعد از آن متخصصين و فيزيكدانان به اين واقعيت پي بردند كه مي توان از تجمع راديو داروها در ارگان هدف تصاويري از آن تهيه نمود و يا به درمان بافت آسيب ديده كمك نمود. بطوريكه در اواسط دهه 60 مطالعات بسياري در خصوص طراحي تجهيزات لازم آغاز گشت. در دهه 1970 توانستند با جاروب نمودن از ارگانهاي ديگر بدن مانند كبد و طحال، تومورهاي مغزي و مجاري گوارشي تصاويري را تهيه نمايند. و در دهه 1980 از راديو داروها جهت تشخيص بيماري هاي قلبي استفاده نمودند و هم اكنون نيز با ضريب اطمينان بسيار بالايي از پزشكي هسته اي در درمان و تشخيص و پيگيري روند درمان بيماريها استفاده مي گردد.
پرتوپزشکی چیست؟
پرتوپزشکی شاخه‌اي از پزشکي است که در آن تشعشع خواص هسته‌اي نوکليدهاي راديواکتيو و نوکليدهاي پايدار ، هم براي تشخيص و هم براي درمان امراض بکار مي‌روند. اين امر مي‌تواند يا با پرتودهي مستقيم مريض با يک چشمه تشتعشع خارجي يا با تزريق داروهاي نشاندار با راديواکتيويته به مريض تحقق يابد .
*راديو دارو
داروهاي نشاندار راديواکتيو که به مريض تزريق يا خورانده مي‌شوند، به نام راديو داروها معروف هستند. دارويي هسته‌اي يا راديو فارماکولوژي روش دارويي خاصي است که با ترکيبات ، آزمايش يا تزريق مناسب راديو دارو به مريض ارتباط دارد.
کاربرد راديوداروها
*روشهاي تشخيص زنده
روشهاي تشخيص زنده آن روشهايي هستند که در آنها يک راديو دارو در سيستم يک مريض زنده ، بطريق خوراندن ، تزريق ، يا با استنشاق وارد مي‌گرددم اشعه گاماي نشر شده بوسيله راديو داروها براي تامين اطلاعات مورد نياز بر روي صفحه کامپيوتر قابل مشاهده هستند.
روشهاي تشخيص غير زنده
روشهاي غير زنده آنهايي هستند که روي نمونه‌هاي برداشته شده از يک مريض انجام مي‌گيرد. تعدادي از اين روشها مستلزم بکارگيري راديو داروها است. ولي مهمترين آنها روش راديو ايمونواسي (RIA) مي‌باشد.
راديو ايمونواسي و تاثير آن در پزشکي

راديو ايمونواسي نوعي تجزيه بطريق رقيق کردن ايزوتوپي (IDA) ، جزو استو کيومتري است که در آن عنصر مورد تجريه نشاندار و غير نشاندار براي پيوند با مقادير محدود مولکولي که بطور خاص با عنصر مورد تجزيه پيوند مي‌دهد، رقابت مي‌کند. RIA بطور گسترده در آزمايشگاههاي پزشکي براي تعيين هورمونها ، داروها ، ويروسها ، و ديگر گونه‌هاي آلي در سطح جهان بکار مي‌رود. شروع RIA به سالهاي 1950 ، با بررسي S.Berson و R.Yalow برروي متابوليسم انسولين B1I در مريض‌هاي ديابتي بر مي‌گردد.
Berson و Yalow دريافتند که مريض‌هاي ديابتي موادي در سرم خون دارند که با انسولين پيوند مي‌دهند. آنها مشاهده کردند که انسولين نشاندار و غيرنشاندار با اين ماده پيوند دهنده رقابت کرده، و اين مقدار انسولين غيرنشاندار موجود ، مقادير انسولين نشاندار را که پيوند داده متاثر مي‌کند. آنها در اين مطالعه توانايي روش ، جهت ارزيابي انسولين را دريافتند. RIA از آن زمان تا کنون پيشرفتهاي گسترده‌اي را در روشهاي پزشکي با کاربردهاي وسيع براي اندازه گيري مقادير بسيار کم بسياري از بيو مولکولهاي مهم نموده است.
کاربردهاي درماني تشعشع
کاربردهاي درماني تشعشع و راديو داروها نسبت به کاربردهاي تشخيص محدودتر هستند. زماني که تشعشع براي درمان بکار مي‌رود، مقصود نابود نمودن يک قسمت خاص از نسوج مريض با تشعشع است. چشمه تشعشع مي‌تواند داخلي و خارجي باشد.
چشمه‌هاي مورد استفاده در درمان
چشمه‌هاي خارجي تشعشع در حال حاضر اساسا در شکل باريکه‌هاي الکتروني يا اشعه ايکس است. بسياري از دستگاهها مي‌توانند براي توليد اين تشعشعات بکار روند. ولي شتابدهندهاي خطي کوچک بيشترين کاربرد را دارند. الکترونهاي با انرژيهاي 4 تا 15 ميليون الکترون ولت براي درمان سرطانهايي که نزديک سطح بدن هستند، مانند سرطانهاي پوست ، سينه ، سر و گردن بکار مي‌روند.
زماني که نفوذ بيشتري از تشعشع لازم باشد، اشعه گاما از يک چشمه بسته راديو نوکليد مورد استفاده قرار مي‌گيرد. 60Co بطور گسترده‌اي براي اين منظور بکار رفته است، ولي در حال حاضر 137Cs ترجيح داده مي‌شود. علاوه بر تشعشع خارجي يک عضو ممکن است، يک سوزن يا دانه راديواکتيو را در داخل بدن مريض کاشت و لذا تنها مقاطع خاصي را که بايد نابود شوند، پرتودهي نمود. در اين رابطه کاشتهاي 198Au و 125I متداول است.
تصویر برداری در پرتوپزشکی
مشکل تصویر برداری از بدن انسان این است که ماده ای کدر و غیر شفاف است، نگاه کردن درون بدن انسان نیز بطور کلی دردناک است. در گذشته روش معمول دیدن درون بدن انسان جراحی بود! اما امروزه با استفاده از انبوهی از روشهای جدید دیگر نیازی به این روشهای وحشتناک نیست. تصویر برداری اشعه X، MRI، تصویر برداری CAT و مافوق صوت برخی از این تکنیک ها هستند. هر کدام از این تکنیک ها مزایا و معایبی دارند که باعث می شود برای شرایط مختلف واعضای مختلف بدن مفید باشند.
تکنیک های تصویر برداری پزشکی هسته ای روشهای جدیدی را برای نگاه کردن به درون بدن انسان برای پزشکان فراهم می کند. این تکنیک ها ترکیبی از استفاده از کامپیوتر، حسگرها و مواد رادیواکتیو است. این روشها عبارتند از:
• توموگرافی با استفاده از تابش پوزیترون (PET)
• اسپکت SPECT
• تصویر برداری قلبی – عروقی
• اسکن استخوان
هر کدام ازاین روشها از یکی از خصوصیات عناصر رادیواکتیو برای تولید یک تصویر استفاده می کنند.
تصویر برداری در پزشکی هسته ای برای شناسایی موارد زیر بسیار مفید است:
• تومورها
• آنوریسم Aneurysms
• نارسایی سلول های خونی و اختلال در عملکرد دستگاههای بدن مثل غده تیروئید و ریه
استفاده از هر کدام از این روشهای خاص یا مجموعه ای از آنها بستگی به علائم بیمار و نوع بیماری دارد.
کلمه سونوگرافی از لفظ لاتین sono به معنی صوت و نیز graphic به معنی شکل و ترسیم گرفته شده و ultrasound از ultra به معنی ماورا و نیز sound به معنی صوت یا صدا گرفته شده است.
تاریخچه
در سال 1876 میلادی، فرانسیس گالتون برای اولین بار پی بوجود امواج فراصوت برد. در زمان جنگ جهانی اول کشور انگلستان برای کمک به جلوگیری از غرق شدن غم ‌انگیز کشتی‌هایش توسط زیردریاییهای کشور آلمان در اقیانوس آتلانتیک شمالی دستگاه کشف کننده زیردریایی‌ها به کمک امواج صوتی به نام صوت‌یاب (Sonar) ابداع کرد. این دستگاه امواج فراصوت تولید می‌کرد که در پید اکردن مسیر کشتیها استفاده می‌شد. این تکنیک در زمان جنگ جهانی دوم تکمیل گردید و بعدها بطور گسترده‌ای در صنعت این کشور برای آشکار سازی شکافها در فلزات و سایر موارد مورد استفاده قرار می‌گرفت. از کاربرد بخصوصی که انعکاس صوت در جنگ و صنعت داشت Sonar به علم پزشکی وارد شد و تبدیل به یک وسیله تشخیصی بزرگ در علم پزشکی گردید.
سیر تحولی در رشد
نخستین دستگاه تولید کننده امواج فراصوت در پزشکی، در سال 1937 میلادی توسط دوسیک اختراع شد و روی مغز انسان امتحان شد. اگر چه فراصوت در ابتدا فقط برای مشخص کردن خط وسط مغز بود، اکنون بصورت یک روش تشخیصی و درمانی مهم در آمده و پیشرفت روز به روز انواع نسلهای دستگاههای تولید فراصوت، تحولات عظیمی در تشخیص و درمان در علم پزشکی بوجود آورده است.
تعریف امواج فراصوت
امواج فراصوت به شکلی از انرژی از امواج مکانیکی گفته می‌شود که فرکانس آنها بالاتر از حد شنوایی انسان باشد. گوش انسان قادر است امواج بین 20 هرتز تا 20000 هرتز را بشنود. هر موج (شنوایی یا فراصوت) یک آشفتگی مکانیکی در یک محیط گاز، مایع و یا جامد است که به بیرون از چشمه صوتی و با سرعتی یکنواخت و معین حرکت می‌کند. در حرکت یا گسیل موج مکانیکی، ماده منتقل نمی‌شود. اگر ارتعاش ذرات در جهت عمود بر انتشار صوت باشد، موج عرضی است که بیشتر در جامدات رخ می‌دهد و در صورتی که ارتعاش در راستای انتشار امواج باشد، موج طولی است. انتشار در بافتهای بدن به صورت امواج طولی است. از این رو در پزشکی با اینگونه امواج سر و کار داریم.
روشهای تولید امواج فراصوت
روش پیزوالکتریسیته
تأثیر متقابل فشار مکانیکی و نیروی الکتریکی را در یک محیط اثر پیزو الکتریسیته می‌گویند. بطور مثال بلورهایی وجود دارند که در اثر فشار مکانیکی، نیروی الکتریکی تولید می‌کنند و برعکس ایجاد اختلاف پتانسیل در دو سوی همین بلور و در همین راستا باعث فشردگی و انبساط آنها می‌شود که ادامه دادن به این فشردگی و انبساط باعث نوسان و تولید امواج می‌شود. مواد (بلورهای) دارای این ویژگی را مواد پیزو الکتریک می‌گویند. اثر پیزو الکتریسیته فقط در بلورهایی که دارای تقارن مرکزی نیستند، وجود دارد. بلور کوارتز از این دسته مواد است و اولین ماده‌ای بود که برای ایجاد امواج فراصوت از آن استفاده می‌شد که اکنون هم استفاده می‌شود.
اگر چه مواد متبلور طبیعی که دارای خاصیت پیزو الکتریسیته باشند، فراوان هستند. ولی در کاربرد امواج فراصوت در پزشکی از کریستالهایی استفاده می‌شود که سرامیکی بوده و بطور مصنوعی تهیه می‌شوند. از نمونه این نوع کریستالها، مخلوطی از زیرکونیت و تیتانیت سرب (Lead zirconat & Lead titanat) است که به شدت دارای خاصیت پیزوالکتریسیته هستند. به این مواد که واسطه‌ای برای تبدیل انرژی الکتریکی به انرژی مکانیکی و بالعکس هستند، مبدل یا ترانسدیوسر (transuscer) می‌گویند. یک ترانسدیوسر فراصوتی بکار می‌رود که علامت الکتریکی را به انرژی فراصوت تبدیل کند که به داخل بافت بدن نفوذ و انرژی فراصوت انعکاس یافته را به علامت الکتریکی تبدیل کند.
روش مگنتو استریکسیون
این خاصیت در مواد فرومغناطیس (مواد دارای دو قطبی‌های مغناطیسی کوچک بطور خود به خود با دو قطبی‌های مجاور خود همخط شوند) تحت تأثیر میدان مغناطیسی بوجود می‌آید. مواد مزبور در این میدانها تغییر طول می‌دهند و بسته به فرکانس (شمارش زنشهای کامل موج در یک ثانیه) جریان متناوب به نوسان در می‌آیند و می‌توانند امواج فراصوت تولید کنند. این مواد در پزشکی کاربرد ندارند و شدت امواج تولید شده به این روش کم است و بیشتر کاربرد آزمایشگاهی دارد.
کاربرد امواج فراصوت
1. کاربرد تشخیصی (سونوگرافی)
2. بیماریهای زنان و زایمان (Gynocology) مانند بررسی قلب جنین، اندازه ‌گیری قطر سر (سن جنین)، بررسی جایگاه اتصال جفت و محل ناف، تومورهای پستان.
3. بیماریهای مغز و اعصاب (Neurology) مانند بررسی تومور مغزی، خونریزی مغزی به صورت اکوگرام مغزی یا اکوانسفالوگرافی.
4. بیماریهای چشم (ophthalmalogy) مانند تشخیص اجسام خارجی در درون چشم، تومور عصبی، خونریزی شبکیه، اندازه ‌گیری قطر چشم، فاصله عدسی از شبکیه.
5. بیماریهای کبدی (Hepatic) مانند بررسی کیست و آبسه‌ کبدی.
6. بیماری‌های قلبی (cardology) مانند بررسی اکوکار دیوگرافی.
7. دندانپزشکی مانند اندازه‌گیری ضخامت بافت نرم در حفره‌های دهانی.
8. این امواج به علت اینکه مانند تشعشعات یونیزان عمل نمی‌کنند. بنابراین برای زنان و کودکان بی‌خطر هستند.
9. کاربرد درمانی (سونوتراپی)
10. کاربرد گرمایی
با جذب امواج فراصوت به‌وسیله بدن بخشی از انرژی آن به گرما تبدیل می‌شود. گرمای موضعی حاصل از جذب امواج فراصوت بهبودی را تسریع می‌کند. قابلیت کشسانی کلاژن (پروتئینی ارتجاعی) را افزایش می‌دهد. کشش در جوشگاههای زخم (scars) افزایش می‌دهد و باعث بهبود آنها می‌شود. اگر اسکار به بافتهای زیرین خود چسبیده باشد، باعث آزاد شدن آنها می‌شود. گرمای حاصل از امواج فراصوت با گرمای حاصل از گرمایش متفاوت است.
میکروماساژ مکانیکی
به هنگام فشردگی و انبساط محیط، امواج طولی فراصوتی روی بافت اثر می‌گذارند و باعث جابجایی آب میان بافتی و در نتیجه باعث کاهش ورم (تجمع آب میان بافتی در اثر ضربه به یک محل) می‌شوند.
درمان آسیب تازه و ورم :آسیب تازه معمولاً با ورم همراه است. فراصوت در بسیاری از موارد برای از بین بردن مواد دفعی در اثر ضربه و کاهش خطر چسبندگی بافتها بهم بکار می‌رود.
درمان ورم کهنه یا مزمن: فراصوت چسبندگیهایی که میان ساختمانهای مجاور ممکن است ایجاد شود را می‌شکند.
خطرات فراصوت
سوختگی
اگر امواج پیوسته و در یک مکان بدون چرخش بکار روند، در بافت باعث سوختگی می‌شود و باید امواج حرکت داده شوند.
پارگی کروموزومی
استفاده دراز مدت از امواج اولتراسوند با شدت خیلی بالا پارگی در رشته دی ان ای (DNA) را نشان می‌دهد.
ایجاد حفره
یکی از عوامل کاهش انرژی امواج اولتراسوند هنگام گذشتن از بافتهای بدن ایجاد حفره یا کاویتاسیون است. همه محلولها شامل مقدار قابل ملاحظه‌ای حبابهای گاز غیر قابل دیدن هستند و دامنه بزرگ نوسانهای امواج اولتراسوند در داخل محلولها می‌تواند بر روی بافتها تغییرات بیولوژیکی ایجاد کند (پارگی در دیواره یاخته‌ها و از هم گسستن مولکولهای بزرگ).
عناصر راديواكتيو معمولا سه نوع ذره يا اشعه از خود صادر مي‌كنند كه شامل ذره آلفا ، ذره بتا و اشعه گاما است. با قرار دادن اشعه راديواكتيو تحت تاثير ميدان مغناطيسي متوجه شده‌اند كه ذره آلفا داراي بار مثبت ، بتا داراي بار منفي و اشعه گاما بدون بار است. خواص ذره آلفا جنس ذره آلفا ، هسته اتم هليوم است كه از دو نوترون و دو پروتون تشكيل يافته است. جرم آن حدود 4 برابر جرم پروتون و بار الكتريكي آن 2+ و علامت اختصاري آن (4,2)He است. برد ذره آلفا به عنصر مادر ، انرژي اوليه و جنس محيط بستگي دارد. مثلا برد ذره آلفا صادره از راديوم در هوا تقريبا 4.8 سانتيمتر مي‌باشد. ذره آلفا به علت داشتن 2 بار مثبت هنگامي كه از نزديكي يك اتم عبور مي كند، ممكن است تحت تاثير ميدان الكتروستاتيكي خود ، الكترون مدار خارجي آن اتم را خارج سازد و يا به عبارت ديگر اتم را يونيزه كند. همچنين ذره آلفا قادر است محل الكترون را تغيير دهد، يعني الكترون تحت تاثير ميدان الكتريكي ذره آلفا از مدار پايين تري به مدار بالاتر صعود مي‌كند و در نتيجه اتم به حالت برانگيخته در مي‌آيد. قابليت نفوذ ذره آلفا بسيار كم است. خواص ذره بتا جنس ذره بتاي منفي ، از جنس الكترون مي‌باشد، بار الكتريكي آن 1- و علامت آن بتاي منفي است. برد ذره بتا در هوا در حدود چند سانتيمتر تا حدود يك متر است. البته برد اين ذره نيز به انرژي اوليه (عنصر مادر) و جنس محيط بستگي دارد. برخلاف ذره آلفا ، ذره بتا از نظر حفاظت يك خطر خارجي محسوب مي‌شود. خاصيت يون سازي اين ذره به مراتب كمتر از ذره آلفا است، يعني بطور متوسط در حدود 100 مرتبه كمتر از ذره آلفا مي‌باشد. ذره بتا مي‌تواند در اتمها ايجاد برانگيختگي كند، ولي اين خاصيت نيز در ذره بتا، به مراتب كمتر از ذره آلفا است. قدرت نفوذ ذره بتا بطور متوسط 100 برابر بيشتر از ذره آلفا است. طيف ذره بتا تك انرژي نيست، بلكه يك طيف پيوسته است كه تمام مقادير انرژي از 0 تا انرژي ماكزيمم را دارا مي‌باشد. اين ذره همان پوزتيرون است كه ضد ماده الكترون مي‌باشد. جرم آن با جرم الكترون برابر بوده و داراي باري مخالف با بار الكترون است و علامت اختصاري آن حرف بتاي مثبت است. خواص اشعه گاما جنس اشعه گاما از جنس امواج الكترومغناطيسي مي‌باشد، يعني از جنس نور است. ولي با طول موج بسيار كوتاه كه طول موج آن از 1 تا 0.01 آنگستروم تغيير مي‌كند. جرم آن در مقياس اتمي صفر ، سرعت آن برابر سرعت نور ، بار الكتريكي آن صفر و علامت اختصاري آن حرف گاما مي‌باشد. انرژي اشعه گاما از 10 كيلو الكترون ولت تا 10 مگا الكترون ولت تغيير مي‌كند. برد آنها بسيار زياد است. مثلا در هوا چندين متر است. خاصيت ايجاد يونيزاسيون و برانگيختگي در اشعه گاما نيز وجود دارد. ولي به مراتب كمتر از ذرات آلفا و بتا است. مثلا اگر قدرت يونيزاسيون متوسط اشعه گاما را يك فرض كنيم، قدرت يونيزاسيون متوسط ذره بتا 100 و ذره آلفا 104 خواهد بود. قدرت نفوذ اين اشعه به مراتب بيشتر از ذرات بتا و آلفا است. طيف انرژي اشعه گاما ، همانند ذرات آلفا تك انرژي است. يعني تمام فوتونهاي گاماي حاصل از يك عنصر راديواكتيو داراي انرژي يكساني هستند
گاه امکان بررسی اجسام از نزدیک وجود ندارد. برای مثال جهت بررسی سطح اقیانوسها نقشه برداری از عراضی جغرافیایی لزوم ساخت وسایلی که بتوانند از راه دور این کاررا انجام دهند به چشم می‌خورد. با دستیابی به فناوری سنجش از راه دور بسیاری از این مشکلات برطرف گشت. در واقع در این روش امکان بررسی اجسام وسطوحی که نیاز به بررسی از راه دور دارند را فراهم می‌آورد. سنجش از راه دور رامی توان به دو بخش فعال وغیر فعال تقسیم کرد. گستره طول موج امواج مایکرویو نسبت به طیف مادون قرمز ومرئی سبب گردیده تا از سنجش از راه دور به وسیله امواج از این طیف استفاده گردد . عملکردسیستمهای سنجش غیرفعال همانند سیستمهای سنجش دما عمل می‌کنند .در اینگونه سیستمها با اندازه گیری انرژی الکترومغناطیسی که هر جسم به طور طبیعی از خود ساتع می‌کند نتایج لازم کسب می‌گردد .هواشناسی واقیانوس نگاری از کاربردهای این نوع سنجش می‌باشد . در سیستمهای سنجش فعال از طیف موج مایکرویو برای روشن کردن هدف استفاده می‌شود. این سنسورها را می‌توان به دو بخش تقسیم کرد : سنسورهای تصویری وغیرتصویری (فاقد قابلیت تصویربرداری) . از انواع سنسورهای غیر تصویری می‌توان به ارتفاع سنج و اسکترومتر ها(پراکنش‌سنج) اشاره کرد .کاربرد ارتفاع سنجها در عکس برداری جغرافیایی وتعیین ارتفاع ازسطح دریا می‌باشد .اسکترومتر که اغلب بر روی زمین نصب میگردند میزان پراکنش امواج را ازسطوح مختلف اندازه گیری می‌کنند. این وسیله در مواردی همچون اندازه گیری سرعت باد در سطح دریا و کالیبراسیون تصویر رادار کابرد دارد . معمول‌ترین سنسور فعال که عمل تصویربرداری را انجام می‌دهد رادار می‌باشد. رادار(radio detection and ranging) مخفف وبه معنای آشکارسازی به کمک امواج مایکرویو است .به طور کلی می‌توان عملکرد رادار را در چگونگی عملکرد سنسورهای آن خلاصه کرد. سنسورها سیگنالهای مایکرویو را به سمت اهدف مورد نظر ارسال کرده وسپس سیگنالهای بازتابیده شده از سطوح مختلف را شناسایی می‌کند. قدرت (میزان انر؟ی) سیگنالهای پراکنده شده جهت تفکیک اهداف مورد استفاده قرارمی گیرد. با اندازه گیری فاصه زمانی بین ارسال ودریافت سیگنالها می‌توان فاصله تا اهداف را مشخص کرد. از مزایای شاخص رادار می‌توان به عملکرد رادار در شب یا روز وهمچنین قابلیت تصویربرداری درشرایط آب و هوایی مختلف اشاره کرد. امواج مایکرویو قادر به نفوذ در ابر مه ,گردوغبار وباران می‌باشند. از آنجاییکه عملکرد رادار با طرز کار سنسورهایی که با طیفهای مرئی ومادون قرمز کار می‌کنند متفاوت است ازاینرو می‌توان با تلفیق اطلاعات بدست آمده تصاویر دقیقی را بدست آورد .
[ویرایش] تاریخچه
اولین تجربه در مورد بازتابش امواج رادیویی توسط هرتز آلمانی در سال ۱۸۸۶ بدست آمد. پس از گذشت مدت زمان کمی اولین رادار که از آن برای آشکارسازی کشتیها استفاده می‌شد مورد بهره برداری قرار گرفت. در سالهای ۱۹۲۰ تا ۱۹۳۰ پیشرفتهایی در جهت ساخت رادار با قابلیت تعیین فاصله اهداف صورت گرفت. اولین رادارهای تصویری درطی جنگ جهانی دوم برای آشکارسازی وموقعیت یابی کشتیها وهواپیماها استفاده شد. بعد از جنگ جهانی دوم راداربا دید جانبی (SLAR) جهت جستجوی اهداف نظامی و کشف مناطق نظامی ساخته شد. اینگونه رادارها با داشتن آنتن درسمت جپ وراست مسیر پرواز قادر به تفکیک دقیقتر اهداف مورد نظر بودند. در سال ۱۹۵۰ با توسعه سیستمهای SLAR تکنولو؟ی رادار دهانه ترکیبی ( رادار با آنتن ترکیبی) گامی در جهت ایجاد تصاویر با کیفیت بالا برداشته شد. در سال ۱۹۶۰ استفاده از رادارها ی هوایی وفضایی توسعه یافت وعلاوه برکاربرد نظامی جهت نقشه برداریهای جغرافیایی و اکتشافات علمی و... نیز مورد استفاده قرار گرفتند. § اصول رادار : مهمترین نکته حائز اهمیت در بخش قبل را میتوان معرفی رادار به عنوان وسیله اندازه گیری معرفی کرد. اجزاء تشکیل دهنده سیستم رادار فرستنده , گیرنده آنتن وسیستمهای الکتریکی جهت ثبت و پردازش اطلاعات می‌باشد. همانطور که در تصویر شماره ۱ مشاهده می‌شود فرستنده پالسهای کوتاه مایکرویو (A) را که بوسیله آنتن راداربه صورت پرتو متمرکز می‌شوند(B) با فاصله زمانی معیین تولید می‌کند. آنتن راداربخشی از سیگنالهای بازتابیده شده (c) از سطوح مختلف را دریافت می‌کند. تصویر شماره ۱
با اندازه گیری مدت زمان ارسال پالس و دریافت پ؟واکهای پراکنده شده از اشیاء مختلف می‌توان فاصله آنها ودر نتیجه موقعیت آنها را تعیین نمود .با ثبت و پردازش سیگنال بازتابیده توسط سنسور تصویر دو بعدی از سطح مورد نظر تشکیل می‌گردد . o پهنای باند : از آنجاییکه گستره طیف امواج مایکرویو نسبت به طیفهای مرئی ومادون قرمزوسیع تر می‌باشد لذا اکثر رادارها از این طیف استفاده می‌کنند. در رادارهای تصویری اغلب از طول موجهای زیر استفاده می‌شود: ka&k&ku band X_band C_band S_band L_band P_band max)) تمامی طول موجهای استفاده شده در رادارهای تصویری در محدوده سانتیمتر است. طول موج رادار در نحوه تشکیل تصویر موثر می‌باشد. با افزایش طول موج شاهد تصاویر با کیفیت بهتر می‌باشیم .در دو تصویر زیر(تصاویر شماره ۲و۳) از دو طول موج متفاوت استفاده شده‌است. شما می‌توانید تفاوت آشکاری را که دراین تصاویر وجود دارد مشاهده نمایید. علت این تفاوت تغییر در نحوه فعل وانفعال سیگنال با سطح اشیاء می‌باشد که در ادامه درباره این موضوع صحبت خواهد شد . c-band l_band
قطبیدگی (polarization) : هنگامی که در مورد امواج الکترومغناطیسی همانند امواج مایکرویو صحبت می‌گردد بحث درباره قطبیدگی حائز اهمیت می‌باشد. قطبیدگی عبارت است از جهت میدان الکتریکی در امواج الکترومغناطیسی. به طور کلی می‌توان قطبیدگی امواج را به سه دسته تقسیم بندی کرد : قطبیدگی خطی و دایره‌ای وبیضوی. اغلب رادارهای تصویری از قطبیدگی خطی استفاده کرده , که این نوع قطبیدگی را می‌توان به دو بخش عمودی(vertical) وافقی (horizontal) تقسیم بندی کرد (تصویر شماره۴). اغلب سنسورهای رادار طوری طراحی شده‌اند که قابلیت ارسال وهمچنین دریافت امواج را به یکی از دو صورت بالا دارا هستند. در بعضی از رادارها دریافت وارسال امواج با ترکیبی از دو نوع قطبیدگی انجام می‌پذیرد .
به طور کلی می‌توان چهارترکیب از قطبیدگی رادرا در نظر گرفت : • HH • VV • HV • VH حرف H نشان دهنده قطبیدگی افقی وحرفV نمایانگر قطبیدگی عمودی می‌باشد. درچهارترکیب بالا حرف سمت راست نحوه دریافت سیگنال را نشان می‌دهد . § هندسه رادار (radar geometry): درسیستم تصویربرداری رادار هوایی با جابجانمودن سکو در یک مسیر مستقیم که مسیرپرواز(flight direction)(A) نامیده می‌شودعمل تصویربرداری انجام میگردد. پای قائم در صفحه تصویر را ندیر(nadir)(B) می‌نامیم .آنتن رادار امواج را برای روشن کردن نوارتصویر(swath) (C) ارسال می‌کند. با قرار گرفتن نوارهای تصویر در کنار هم ناحیه تصویر(track) (ناحیه خاکستری رنگ ) تشکیل می‌گردد که این ناحیه نسبت به خط ندیر فاصله دارد. محور طولی ناحیه تصویرکه با مسیر پروازموازی می‌باشدرا سمت(azimuth)(E) ومحورعرضی راکه برمسیرپروازعمود است را برد(range)(D) می‌نامیم .
تصویر شماره ۵ § وا؟ه‌شناسی : محدوده نزدیک (Near range): بخشی از نوارتصویر که به خط ندیر نزدیک است . محدوده دور(far range) : بخشی از نوار تصویر که در فاصله دور نسبت به خط ندیر قرار دارد . برد مایل (slant range): خط شعاعی که از رادار به هریک از اهداف می‌توان نظیر کرد . برد زمینی (ground range ) : تصویر برد مایل در سطح زمین . زاویه تابش(incidence angle) : زاویه بین پرتورادار و سطح زمین . زاویه دید(look angle) : زاویه بین خط عمود وپرتو رادار. تصویر شماره ۶ § اثرات سطح بر تصویر رادار : میزان روشنایی ( درخشندگی ) تصویر به میزان پراکندگی(scattering) سیگنالهای مایکرویودر برخورد باسطح بستگی دارد. پراکنش سیگنال به پارامترهایی از قبیل مشخصات رادار (فرکانس قطبیدگی هندسه دید و...) وهمچنین خصوصیات سطح (پستی وبلندی نوع پوشش و...) وابسته‌است. به طور کلی می‌توانیم عوامل بالا را در سه عامل اصلی زیر خلاصه کنیم : ۱) صیقلی بودن سطح ۲) هنسه دید و رابطه آن باسطح ۳) درصد رطوبت وخصوصیات الکتریکی سطح صیقلی بودن سطح مهمترین عامل تعیین کننده روشنایی تصویرمی باشد. سطوح صاف موجب بازتابش آیینه ای(A) در فعل وانفعال سیگنال رادار با سطح می‌گردند. درنتیجه این نوع بازتابش مقدار اندکی ازسیگنالهای بازتابیده شده به سمت رادار باز میگردند. بنابراین سطوح صاف با درجه تیره گی بیشتر در تصویر ظاهر خواهند گشت. سطوح ناصاف سیگنالهای رادار راتقریبا به صورت یکنواخت بازتاب می‌دهند. و درنتیجه بخش عمده‌ای از این سیگنالها به سمت راداربازمیگردند. بنابراین سطوح ناصاف با درجه روشنایی بیشتر در تصویر مشاهده می‌شوند. به این نوع انعکاس بازتابش پخشیده(B)گفته می‌شود. احتمال وقوع انعکاس زاویه‌ای (C) در نواحی که از سطوح عمود برهم تشکیل شده وجود دارد. به بیان ساده تر سیگنالهای بازتابیده شده از سطح اول پس از برخورد به سطح دوم به سمت رادار بازتاب داده میشود .این نوع انعکاس به طور معمول در مناطق شهری (ساختمانها خیابانها پلها و... ) اتفاق می‌افتد. صخره‌ها کوه‌ها ونیزار رودخانه‌ها نیز سیگنال رادار را اینگونه بازتاب می‌دهند.
تصویر شماره ۷ زاویه تابش(incidence angle) نیز در نحوه شکل گیری تصویر همچنین صیقلی بودن سطوح نقش ایفا می‌کند. با در نظر گرفتن سطح وطول موج ثابت با افزایش زاویه تابش سیگنالهای کمتری به سوی رادار بازمیگردند ودر نتیجه درجه تیره گی افزایش می‌یابد .به بیان دیگر با افزایش زاویه تابش سطوح صیقلی تر از مقدار واقعی خود در تصویر ظاهرمی شوند. به طور کلی تغییر در هندسه دید در بهبود نقشه‌های جغرافیایی وهمچنین برطرف کردن اختلالهایی از قبیل سایه دارشدن و کاهش عمق تصویرموثر می‌باشد. وجود رطوبت در خصوصیات الکتریکی وحجم اجسام موثر می‌باشد. تغییر در خواص الکتریکی در جذب ارسال وهمچنین نحوه شکل گیری تصویر موثر می‌باشد. بنابراین درصد رطوبت اجسام در فعل وانفعال سیگنال رادارومتعاقبا تصویر موثر می‌باشد. معمولا با افزایش رطوبت جسم سیگنالهای بیشتری توسط جسم بازتابیده می‌شود. برای مثال علفزارهای وسیع در هنگامی که مرطوب هستند در تصویر رادار روشنتر ظاهر می‌شوند. § دقت تفکیک(spatial resolution) : به میزان توانایی رادار جهت تفکیک اشیاء مختلف از همدیگر دقت تفکیک گفته می‌شود. بر خلاف سیستمهای نوری افزایش دقت تفکیک در رادار بر اساس خصوصیات امواج مایکرویو وهمچنین تاثیرات هندسی انجام می‌پذیرد. دررادارهایی که از یک آنتن جهت ارسال امواج استفاده می‌کنند یک پالس موج ارسال گشته و با دریافت پ؟واک آن توسط گیرنده تصویر تشکیل می‌شود . دقت تفکیک را می‌توان در دو راستا بررسی کرد. در جهت سمت ناحیه تصویر که دقت سمت (azimuth resolution) نامیده می‌شود ودر جهت برد که آن را دقت برد (range resolution) می‌نامیم . دقت برد به طول پالس رادار (P) بستگی دارد. در صورتی که عمل تفکیک با طول بیشتر از نصف پالس صورت گیرد اهداف از یکدیگر قابل تشخیص اند. برای مثال در شکل شماره ۸ اهداف ۱و۲ در تصویر به صورت یک جسم مشخص شده در حالیکه هدفهای ۳و۴ به راحتی از هم تفکیک شده‌اند . با افزایش زاویه تابش (افزایش برد )شاهد کاهش دقت برد می‌باشیم . تصویر شماره ۸ دقت سمت به پهنای ستون امواج رادار یا پهنای زاویه‌ای (beam width) (A) و همچنین برد مایل(slant range) وابسته‌است. با افزایش پهنای زاویه‌ای می‌توانیم شاهد دقت سمت باشیم. در تصویرشماره ۹ اهداف ۱و۲ که در محدوده نزدیک قرار دارند توسط رادار به راحتی قابل تشخیص اند درحالیکه هدفهای ۳و۴ که در محدوده دور قرار گرفته‌اند قابل تشخیص نمی‌باشند. همچنین با افزایش طول آنتن رادار می‌توان دقت سمت را افزایش داد .
تصویر شماره ۹ رادار دهانه ترکیبی (synthetic aperture radar): همانطور که در قسمت قبل گفته شد جهت بالابردن دقت سمت می‌توانیم طول آنتن رادار را افزایش دهیم. اگرچه در این افزایش طول ما با محدودیتهایی مواجه هستیم. در رادرهای هوایی طول آنتن رادار بین ۱ تا ۲ متر در نظر گرفته می‌شود. در ماهواره‌ها ما می‌توانیم این محدوده را بین ۱۰ تا ۱۵ متر در نظر بگیریم. با تغییراتی در چگونگی حرکت سکوی رادار وثبت و پردازش سیگنالهای بازتابیده شده می‌توان بر محدودیت اندازه غلبه کرد. بدین طریق که ما با تغییر در نحوه رفتار رادار به صورت مجازی طول آنتن رادار را افزایش داده‌ایم . تصویر شماره ۱۰ چگونگی رسیدن به این خواسته را تشریح می‌کند . ۱) ابتداشیءهدف (A)سیگنالهای مایکرویو را به صورت پالس دریافت کرده. پ؟واکهای هر پالس توسط رادار ثبت می‌شوند. سکوی رادار در مسیر مستقیم به طور پیوسته در حال حرکت است. در طول زمانی که شیء هدف در معرض پالسهای رادار قرار داردعمل ثبت سیگنالهای بازتابیده شده از شیءتوسط رادار انجام می‌پذیرد .۲) زمان چندانی طول نمی‌کشد تا طول آنتن ترکیبی (B) مشخص گردد . تصویر شماره ۱۰ با افزایش پهنای زاویه‌ای وهمچنین کاهش سرعت سکو می‌توانیم دقت سمت را در محدوده دور افزایش دهیم .در نتیجه شاهد ثابت ماندن دقت تفکیک درراستای سمت می‌باشیم .به تکنولو؟ی فوق که جهت افزایش دقت برد صورت می‌پذیرد رادار دهانه ترکیبی یا SAR گفته می‌شود .این روش در اکثررادارهای هوایی وفضایی استفاده می‌شود . § خصوصیات تصویر رادار : در تصاویر رادار با نوعی اختلال مواجه هستیم که به نویز اسپیکل(speckle) معروف است. این اختلال که باعث ظاهرشدن دانه‌های ریزودرشت (بافت فلفل نمکی) در تصویر می‌شود زاییده ساختار بهم ریخته سطح و همچنین تداخ
 

منبع:http://electron.blogfa.com/